分布式消息队列RocketMQ工作原理与应用(八)

简介: 第 4 章 RocketMQ应用 七、消息发送重试机制 1 说明 Producer对发送失败的消息进行重新发送的机制,称为消息发送重试机制,也称为消息重投机制。 对于消息重投,需要注意以下几点: 生产

第 4 章 RocketMQ应用

七、消息发送重试机制

1 说明

Producer对发送失败的消息进行重新发送的机制,称为消息发送重试机制,也称为消息重投机制。

对于消息重投,需要注意以下几点:

  • 生产者在发送消息时,若采用同步或异步发送方式,发送失败会重试,但oneway消息发送方式发送失败是没有重试机制的
  • 只有普通消息具有发送重试机制,顺序消息是没有的
  • 消息重投机制可以保证消息尽可能发送成功、不丢失,但可能会造成消息重复。消息重复在RocketMQ中是无法避免的问题
  • 消息重复在一般情况下不会发生,当出现消息量大、网络抖动,消息重复就会成为大概率事件
  • producer主动重发、consumer负载变化(发生Rebalance,不会导致消息重复,但可能出现重复消费)也会导致重复消息
  • 消息重复无法避免,但要避免消息的重复消费。
  • 避免消息重复消费的解决方案是,为消息添加唯一标识(例如消息key),使消费者对消息进行消费判断来避免重复消费
  • 消息发送重试有三种策略可以选择:同步发送失败策略、异步发送失败策略、消息刷盘失败策略

2 同步发送失败策略

对于普通消息,消息发送默认采用round-robin策略来选择所发送到的队列。如果发送失败,默认重试 2次。但在重试时是不会选择上次发送失败的Broker,而是选择其它Broker。当然,若只有一个Broker其也只能发送到该Broker,但其会尽量发送到该Broker上的其它Queue。

// 创建一个producer,参数为Producer Group名称
DefaultMQProducer producer = new DefaultMQProducer("pg");
// 指定nameServer地址
producer.setNamesrvAddr("rocketmqOS:9876");
// 设置同步发送失败时重试发送的次数,默认为 2 次
producer.setRetryTimesWhenSendFailed( 3 );
// 设置发送超时时限为5s,默认3s
producer.setSendMsgTimeout( 5000 );

同时,Broker还具有失败隔离功能,使Producer尽量选择未发生过发送失败的Broker作为目标Broker。其可以保证其它消息尽量不发送到问题Broker,为了提升消息发送效率,降低消息发送耗时。

思考:让我们自己实现失败隔离功能,如何来做?

1 )方案一:Producer中维护某JUC的Map集合,其key是发生失败的时间戳,value为Broker实例。Producer中还维护着一个Set集合,其中存放着所有未发生发送异常的Broker实例。选择目标Broker是从该Set集合中选择的。再定义一个定时任务,定期从Map集合中将长期未发生发送异常的Broker清理出去,并添加到Set集合。

2 )方案二:为Producer中的Broker实例添加一个标识,例如是一个AtomicBoolean属性。只要该Broker上发生过发送异常,就将其置为true。选择目标Broker就是选择该属性值为false的Broker。再定义一个定时任务,定期将Broker的该属性置为false。

3 )方案三:为Producer中的Broker实例添加一个标识,例如是一个AtomicLong属性。只要该Broker上发生过发送异常,就使其值增一。选择目标Broker就是选择该属性值最小的Broker。若该值相同,采用轮询方式选择。

如果超过重试次数,则抛出异常,由Producer去保证消息不丢。当然当生产者出现
RemotingException、MQClientException和MQBrokerException时,Producer会自动重投消息。

3 异步发送失败策略

异步发送失败重试时,异步重试不会选择其他broker,仅在同一个broker上做重试,所以该策略无法保证消息不丢。

DefaultMQProducer producer = new DefaultMQProducer("pg");producer.setNamesrvAddr("rocketmqOS:9876");// 指定异步发送失败后不进行重试发送producer.setRetryTimesWhenSendAsyncFailed( 0 );

4 消息刷盘失败策略

消息刷盘超时(Master或Slave)或slave不可用(slave在做数据同步时向master返回状态不是SEND_OK)时,默认是不会将消息尝试发送到其他Broker的。不过,对于重要消息可以通过在Broker的配置文件设置retryAnotherBrokerWhenNotStoreOK属性为true来开启。

八、消息消费重试机制

1 顺序消息的消费重试

对于顺序消息,当Consumer消费消息失败后,为了保证消息的顺序性,其会自动不断地进行消息重试,直到消费成功。消费重试默认间隔时间为 1000 毫秒。重试期间应用会出现消息消费被阻塞的情况。

DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("cg");// 顺序消息消费失败的消费重试时间间隔,单位毫秒,默认为 1000 ,其取值范围为[10,30000]consumer.setSuspendCurrentQueueTimeMillis( 100 );

由于对顺序消息的重试是无休止的,不间断的,直至消费成功,所以,对于顺序消息的消费,务必要保证应用能够及时监控并处理消费失败的情况,避免消费被永久性阻塞。

注意,顺序消息没有发送失败重试机制,但具有消费失败重试机制

2 无序消息的消费重试

对于无序消息(普通消息、延时消息、事务消息),当Consumer消费消息失败时,可以通过设置返回状态达到消息重试的效果。不过需要注意,无序消息的重试只对集群消费方式生效,广播消费方式不提供失败重试特性。即对于广播消费,消费失败后,失败消息不再重试,继续消费后续消息。

3 消费重试次数与间隔

对于无序消息集群消费下的重试消费,每条消息默认最多重试 16 次,但每次重试的间隔时间是不同的,会逐渐变长。每次重试的间隔时间如下表。

重试次数 与上次重试的时间间隔 重试次数 与上次重试的时间间隔
1 10秒 9 7分钟
2 30秒 10 8分钟
3 1分钟 11 9分钟
4 2分钟 12 10分钟
5 3分钟 13 20分钟
6 4分钟 14 30分钟
7 5分钟 15 1小时
8 6分钟 16 2小时

若一条消息在一直消费失败的前提下,将会在正常消费后的第 4 小时 46 分后进行第 16 次重试。若仍然失败,则将消息投递到死信队列

修改消费重试次数

DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("cg");
// 修改消费重试次数
consumer.setMaxReconsumeTimes( 10 );

对于修改过的重试次数,将按照以下策略执行:

  • 若修改值小于 16 ,则按照指定间隔进行重试
  • 若修改值大于 16 ,则超过 16 次的重试时间间隔均为 2 小时

对于Consumer Group,若仅修改了一个Consumer的消费重试次数,则会应用到该Group中所有其它Consumer实例。若出现多个Consumer均做了修改的情况,则采用覆盖方式生效。即最后被修改的值会覆盖前面设置的值。

4 重试队列

对于需要重试消费的消息,并不是Consumer在等待了指定时长后再次去拉取原来的消息进行消费,而是将这些需要重试消费的消息放入到了一个特殊Topic的队列中,而后进行再次消费的。这个特殊的队列就是重试队列。

当出现需要进行重试消费的消息时,Broker会为每个消费组都设置一个Topic名称
%RETRY%consumerGroup@consumerGroup的重试队列。

1 )这个重试队列是针对消息才组的,而不是针对每个Topic设置的(一个Topic的消息可以让多个消费者组进行消费,所以会为这些消费者组各创建一个重试队列)

2 )只有当出现需要进行重试消费的消息时,才会为该消费者组创建重试队列

在这里插入图片描述

注意,消费重试的时间间隔与 延时消费延时等级十分相似,除了没有延时等级的前两个时间外,其它的时间都是相同的

Broker对于重试消息的处理是通过延时消息实现的。先将消息保存到SCHEDULE_TOPIC_XXXX延迟队列中,延迟时间到后,会将消息投递到%RETRY%consumerGroup@consumerGroup重试队列中。

5 消费重试配置方式

在这里插入图片描述

集群消费方式下,消息消费失败后若希望消费重试,则需要在消息监听器接口的实现中明确进行如下三种方式之一的配置:

  • 方式 1 :返回ConsumeConcurrentlyStatus.RECONSUME_LATER(推荐)
  • 方式 2 :返回Null
  • 方式 3 :抛出异常

6 消费不重试配置方式

在这里插入图片描述

集群消费方式下,消息消费失败后若不希望消费重试,则在捕获到异常后同样也返回与消费成功后的相同的结果,即ConsumeConcurrentlyStatus.CONSUME_SUCCESS,则不进行消费重试。

九、死信队列

1 什么是死信队列

当一条消息初次消费失败,消息队列会自动进行消费重试;达到最大重试次数后,若消费依然失败,则表明消费者在正常情况下无法正确地消费该消息,此时,消息队列不会立刻将消息丢弃,而是将其发送到该消费者对应的特殊队列中。这个队列就是死信队列(Dead-Letter Queue,DLQ),而其中的消息则称为死信消息(Dead-Letter Message,DLM)。

死信队列是用于处理无法被正常消费的消息的。

2 死信队列的特征

死信队列具有如下特征:

  • 死信队列中的消息不会再被消费者正常消费,即DLQ对于消费者是不可见的
  • 死信存储有效期与正常消息相同,均为 3 天(commitlog文件的过期时间), 3 天后会被自动删除
  • 死信队列就是一个特殊的Topic,名称为%DLQ%consumerGroup@consumerGroup,即每个消费者组都有一个死信队列
  • 如果一个消费者组未产生死信消息,则不会为其创建相应的死信队列

3 死信消息的处理

实际上,当一条消息进入死信队列,就意味着系统中某些地方出现了问题,从而导致消费者无法正常消费该消息,比如代码中原本就存在Bug。因此,对于死信消息,通常需要开发人员进行特殊处理。最关键的步骤是要排查可疑因素,解决代码中可能存在的Bug,然后再将原来的死信消息再次进行投递消费。

相关实践学习
快速体验阿里云云消息队列RocketMQ版
本实验将带您快速体验使用云消息队列RocketMQ版Serverless系列实例进行获取接入点、创建Topic、创建订阅组、收发消息、查看消息轨迹和仪表盘。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
目录
相关文章
|
7月前
|
消息中间件 存储 缓存
RocketMQ原理—4.消息读写的性能优化
本文详细解析了RocketMQ消息队列的核心原理与性能优化机制,涵盖Producer消息分发、Broker高并发写入、Consumer拉取消息流程等内容。重点探讨了基于队列的消息分发、Hash有序分发、CommitLog内存写入优化、ConsumeQueue物理存储设计等关键技术点。同时分析了数据丢失场景及解决方案,如同步刷盘与JVM OffHeap缓存分离策略,并总结了写入与读取流程的性能优化方法,为理解和优化分布式消息系统提供了全面指导。
RocketMQ原理—4.消息读写的性能优化
|
5月前
|
消息中间件 存储 Kafka
一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性
本文详细介绍了分布式消息中间件RocketMQ的核心概念、部署方式及使用方法。RocketMQ由阿里研发并开源,具有高性能、高可靠性和分布式特性,广泛应用于金融、互联网等领域。文章从环境搭建到消息类型的实战(普通消息、延迟消息、顺序消息和事务消息)进行了全面解析,并对比了三种消费者类型(PushConsumer、SimpleConsumer和PullConsumer)的特点与适用场景。最后总结了使用RocketMQ时的关键注意事项,如Topic和Tag的设计、监控告警的重要性以及性能与可靠性的平衡。通过学习本文,读者可掌握RocketMQ的使用精髓并灵活应用于实际项目中。
4105 9
 一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性
|
6月前
|
安全 JavaScript 前端开发
HarmonyOS NEXT~HarmonyOS 语言仓颉:下一代分布式开发语言的技术解析与应用实践
HarmonyOS语言仓颉是华为专为HarmonyOS生态系统设计的新型编程语言,旨在解决分布式环境下的开发挑战。它以“编码创造”为理念,具备分布式原生、高性能与高效率、安全可靠三大核心特性。仓颉语言通过内置分布式能力简化跨设备开发,提供统一的编程模型和开发体验。文章从语言基础、关键特性、开发实践及未来展望四个方面剖析其技术优势,助力开发者掌握这一新兴工具,构建全场景分布式应用。
675 35
|
7月前
|
消息中间件 存储 设计模式
RocketMQ原理—5.高可用+高并发+高性能架构
本文主要从高可用架构、高并发架构、高性能架构三个方面来介绍RocketMQ的原理。
2579 21
RocketMQ原理—5.高可用+高并发+高性能架构
|
5月前
|
分布式计算 Java 大数据
Java 大视界 —— 基于 Java 的大数据分布式计算在气象数据处理与天气预报中的应用进展(176)
本文围绕基于 Java 的大数据分布式计算在气象数据处理与天气预报中的应用展开,剖析行业现状与挑战,阐释技术原理,介绍其在数据处理及天气预报中的具体应用,并结合实际案例展示实施效果。
|
7月前
|
存储 消息中间件 缓存
RocketMQ原理—3.源码设计简单分析下
本文介绍了Producer作为生产者是如何创建出来的、启动时是如何准备好相关资源的、如何从拉取Topic元数据的、如何选择MessageQueue的、与Broker是如何进行网络通信的,Broker收到一条消息后是如何存储的、如何实时更新索引文件的、如何实现同步刷盘以及异步刷盘的、如何清理存储较久的磁盘数据的,Consumer作为消费者是如何创建和启动的、消费者组的多个Consumer会如何分配消息、Consumer会如何从Broker拉取一批消息。
364 11
RocketMQ原理—3.源码设计简单分析下
|
6月前
|
NoSQL 算法 安全
分布式锁—1.原理算法和使用建议
本文主要探讨了Redis分布式锁的八大问题,包括非原子操作、忘记释放锁、释放其他线程的锁、加锁失败处理、锁重入问题、锁竞争问题、锁超时失效及主从复制问题,并提供了相应的优化措施。接着分析了Redis的RedLock算法,讨论其优缺点以及分布式专家Martin对其的质疑。此外,文章对比了基于Redis和Zookeeper(zk)的分布式锁实现原理,包括获取与释放锁的具体流程。最后总结了两种分布式锁的适用场景及使用建议,指出Redis分布式锁虽有性能优势但模型不够健壮,而zk分布式锁更稳定但部署成本较高。实际应用中需根据业务需求权衡选择。
|
7月前
|
存储 消息中间件 网络协议
RocketMQ原理—1.RocketMQ整体运行原理
本文详细解析了RocketMQ的整体运行原理,涵盖从生产者到消费者的全流程。首先介绍生产者发送消息的机制,包括Topic与MessageQueue的关系及写入策略;接着分析Broker如何通过CommitLog和ConsumeQueue实现消息持久化,并探讨同步与异步刷盘的优缺点。同时,讲解基于DLedger技术的主从同步原理,确保高可用性。消费者部分则重点讨论消费模式(集群 vs 广播)、拉取消息策略及负载均衡机制。网络通信层面,基于Netty的高性能架构通过多线程池分工协作提升并发能力。最后,揭示mmap与PageCache技术优化文件读写的细节,总结了RocketMQ的核心运行机制。
RocketMQ原理—1.RocketMQ整体运行原理
Java 大视界 -- 基于 Java 的大数据分布式存储在视频监控数据管理中的应用优化(170)
本文围绕基于 Java 的大数据分布式存储在视频监控数据管理中的应用展开,分析管理现状与挑战,阐述技术应用,结合案例和代码给出实操方案。
|
7月前
|
消息中间件 Java 数据管理
RocketMQ原理—2.源码设计简单分析上
本文介绍了NameServer的启动脚本、启动时会解析哪些配置、如何初始化Netty网络服务器、如何启动Netty网络服务器,介绍了Broker启动时是如何初始化配置的、BrokerController的创建以及包含的组件、BrokerController的初始化、启动、Broker如何把自己注册到NameServer上、BrokerOuterAPI是如何发送注册请求的,介绍了NameServer如何处理Broker的注册请求、Broker如何发送定时心跳

相关产品

  • 云消息队列 MQ