分布式消息队列RocketMQ工作原理与应用(五)

简介: 第 3 章 RocketMQ工作原理 七、消费幂等 1 什么是消费幂等 当出现消费者对某条消息重复消费的情况时,重复消费的结果与消费一次的结果是相同的,并且多次消费并未对业务系统产生任何负面影响,那么

第 3 章 RocketMQ工作原理

七、消费幂等

1 什么是消费幂等

当出现消费者对某条消息重复消费的情况时,重复消费的结果与消费一次的结果是相同的,并且多次消费并未对业务系统产生任何负面影响,那么这个消费过程就是消费幂等的。

幂等:若某操作执行多次与执行一次对系统产生的影响是相同的,则称该操作是幂等的。

在互联网应用中,尤其在网络不稳定的情况下,消息很有可能会出现重复发送或重复消费。如果重复的消息可能会影响业务处理,那么就应该对消息做幂等处理。

2 消息重复的场景分析

什么情况下可能会出现消息被重复消费呢?最常见的有以下三种情况:

发送时消息重复

当一条消息已被成功发送到Broker并完成持久化,此时出现了网络闪断,从而导致Broker对Producer应答失败。 如果此时Producer意识到消息发送失败并尝试再次发送消息,此时Broker中就可能会出现两条内容相同并且Message ID也相同的消息,那么后续Consumer就一定会消费两次该消息。

消费时消息重复

消息已投递到Consumer并完成业务处理,当Consumer给Broker反馈应答时网络闪断,Broker没有接收到消费成功响应。为了保证消息至少被消费一次的原则,Broker将在网络恢复后再次尝试投递之前已被处理过的消息。此时消费者就会收到与之前处理过的内容相同、Message ID也相同的消息。

Rebalance时消息重复

当Consumer Group中的Consumer数量发生变化时,或其订阅的Topic的Queue数量发生变化时,会触发Rebalance,此时Consumer可能会收到曾经被消费过的消息。

3 通用解决方案

两要素

幂等解决方案的设计中涉及到两项要素:幂等令牌,与唯一性处理。只要充分利用好这两要素,就可以设计出好的幂等解决方案。

  • 幂等令牌:是生产者和消费者两者中的既定协议,通常指具备唯一业务标识的字符串。例如,订单号、流水号。一般由Producer随着消息一同发送来的。
  • 唯一性处理:服务端通过采用一定的算法策略,保证同一个业务逻辑不会被重复执行成功多次。例如,对同一笔订单的多次支付操作,只会成功一次。

解决方案

对于常见的系统,幂等性操作的通用性解决方案是:

  1. 首先通过缓存去重。在缓存中如果已经存在了某幂等令牌,则说明本次操作是重复性操作;若缓存没有命中,则进入下一步。
  2. 在唯一性处理之前,先在数据库中查询幂等令牌作为索引的数据是否存在。若存在,则说明本次操作为重复性操作;若不存在,则进入下一步。
  3. 在同一事务中完成三项操作:唯一性处理后,将幂等令牌写入到缓存,并将幂等令牌作为唯一索引的数据写入到DB中。

    第 1 步已经判断过是否是重复性操作了,为什么第 2 步还要再次判断?能够进入第 2 步,说明已经不是重复操作了,第 2 次判断是否重复?

    当然不重复。一般缓存中的数据是具有有效期的。缓存中数据的有效期一旦过期,就是发生缓存穿透,使请求直接就到达了DBMS。

解决方案举例

以支付场景为例:

  1. 当支付请求到达后,首先在Redis缓存中却获取key为支付流水号的缓存value。若value不空,则说明本次支付是重复操作,业务系统直接返回调用侧重复支付标识;若value为空,则进入下一步操作
  2. 到DBMS中根据支付流水号查询是否存在相应实例。若存在,则说明本次支付是重复操作,业务系统直接返回调用侧重复支付标识;若不存在,则说明本次操作是首次操作,进入下一步完成唯一性处理
  3. 在分布式事务中完成三项操作:

    • 完成支付任务
    • 将当前支付流水号作为key,任意字符串作为value,通过set(key, value, expireTime)将数据写入到Redis缓存
    • 将当前支付流水号作为主键,与其它相关数据共同写入到DBMS

4 消费幂等的实现

消费幂等的解决方案很简单:为消息指定不会重复的唯一标识。因为Message ID有可能出现重复的情况,所以真正安全的幂等处理,不建议以Message ID作为处理依据。最好的方式是以业务唯一标识作为幂等处理的关键依据,而业务的唯一标识可以通过消息Key设置。

以支付场景为例,可以将消息的Key设置为订单号,作为幂等处理的依据。具体代码示例如下:

Message message = new Message();
message.setKey("ORDERID_100");
SendResult sendResult = producer.send(message);

消费者收到消息时可以根据消息的Key即订单号来实现消费幂等:

consumer.registerMessageListener(new MessageListenerConcurrently() {
    @Override
    public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt>msgs,
    ConsumeConcurrentlyContext context) {
        for(MessageExt msg:msgs){
            String key = msg.getKeys();
            // 根据业务唯一标识Key做幂等处理
            // ......
        }
        return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
    }
});
RocketMQ能够保证消息不丢失,但不能保证消息不重复。

八、消息堆积与消费延迟

1 概念

消息处理流程中,如果Consumer的消费速度跟不上Producer的发送速度,MQ中未处理的消息会越来越多(进的多出的少),这部分消息就被称为堆积消息。消息出现堆积进而会造成消息的消费延迟。以下场景需要重点关注消息堆积和消费延迟问题:

  • 业务系统上下游能力不匹配造成的持续堆积,且无法自行恢复。
  • 业务系统对消息的消费实时性要求较高,即使是短暂的堆积造成的消费延迟也无法接受。

2 产生原因分析

在这里插入图片描述
Consumer使用长轮询Pull模式消费消息时,分为以下两个阶段:

消息拉取

Consumer通过长轮询Pull模式批量拉取的方式从服务端获取消息,将拉取到的消息缓存到本地缓冲队
列中。对于拉取式消费,在内网环境下会有很高的吞吐量,所以这一阶段一般不会成为消息堆积的瓶
颈。

一个单线程单分区的低规格主机(Consumer,4C8G),其可达到几万的TPS。如果是多个分区多个线程,则可以轻松达到几十万的TPS。

消息消费

Consumer将本地缓存的消息提交到消费线程中,使用业务消费逻辑对消息进行处理,处理完毕后获取到一个结果。这是真正的消息消费过程。此时Consumer的消费能力就完全依赖于消息的消费耗时消费并发度了。如果由于业务处理逻辑复杂等原因,导致处理单条消息的耗时较长,则整体的消息吞吐量肯定不会高,此时就会导致Consumer本地缓冲队列达到上限,停止从服务端拉取消息。

结论

消息堆积的主要瓶颈在于客户端的消费能力,而消费能力由消费耗时消费并发度决定。注意,消费耗时的优先级要高于消费并发度。即在保证了消费耗时的合理性前提下,再考虑消费并发度问题。

3 消费耗时

影响消息处理时长的主要因素是代码逻辑。而代码逻辑中可能会影响处理时长代码主要有两种类型:CPU内部计算型代码外部I/O操作型代码

通常情况下代码中如果没有复杂的递归和循环的话,内部计算耗时相对外部I/O操作来说几乎可以忽略。所以外部IO型代码是影响消息处理时长的主要症结所在。

外部IO操作型代码举例:

  • 读写外部数据库,例如对远程MySQL的访问
  • 读写外部缓存系统,例如对远程Redis的访问
  • 下游系统调用,例如Dubbo的RPC远程调用,Spring Cloud的对下游系统的Http接口调用

关于下游系统调用逻辑需要进行提前梳理,掌握每个调用操作预期的耗时,这样做是为了能够判断消费逻辑中IO操作的耗时是否合理。通常消息堆积是由于下游系统出现了服务异常或达到了DBMS容量限制,导致消费耗时增加。

服务异常,并不仅仅是系统中出现的类似 500 这样的代码错误,而可能是更加隐蔽的问题。例如,网络带宽问题。

达到了DBMS容量限制,其也会引发消息的消费耗时增加。

4 消费并发度

一般情况下,消费者端的消费并发度由单节点线程数和节点数量共同决定,其值为单节点线程数*节点数量。不过,通常需要优先调整单节点的线程数,若单机硬件资源达到了上限,则需要通过横向扩展来提高消费并发度。

单节点线程数,即单个Consumer所包含的线程数量

节点数量,即Consumer Group所包含的Consumer数量

对于普通消息、延时消息及事务消息,并发度计算都是单节点线程数*节点数量。但对于顺序消息则是不同的。顺序消息的消费并发度等于Topic的Queue分区数量

1 )全局顺序消息:该类型消息的Topic只有一个Queue分区。其可以保证该Topic的所有消息被顺序消费。为了保证这个全局顺序性,Consumer Group中在同一时刻只能有一个Consumer的一个线程进行消费。所以其并发度为 1 。

2 )分区顺序消息:该类型消息的Topic有多个Queue分区。其仅可以保证该Topic的每个Queue分区中的消息被顺序消费,不能保证整个Topic中消息的顺序消费。为了保证这个分区顺序性,每个Queue分区中的消息在Consumer Group中的同一时刻只能有一个Consumer的一个线程进行消费。即,在同一时刻最多会出现多个Queue分蘖有多个Consumer的多个线程并行消费。所以其并发度为Topic的分区数量。

5 单机线程数计算

对于一台主机中线程池中线程数的设置需要谨慎,不能盲目直接调大线程数,设置过大的线程数反而会带来大量的线程切换的开销。理想环境下单节点的最优线程数计算模型为:C *(T1 + T2)/ T1。

  • C:CPU内核数
  • T1:CPU内部逻辑计算耗时
  • T2:外部IO操作耗时
最优线程数 = C (T1 + T2)/ T1 = C T1/T1 + C T2/T1 = C + C T2/T1

注意,该计算出的数值是理想状态下的理论数据,在生产环境中,不建议直接使用。而是根据当前环境,先设置一个比该值小的数值然后观察其压测效果,然后再根据效果逐步调大线程数,直至找到在该环境中性能最佳时的值。

6 如何避免

为了避免在业务使用时出现非预期的消息堆积和消费延迟问题,需要在前期设计阶段对整个业务逻辑进行完善的排查和梳理。其中最重要的就是梳理消息的消费耗时设置消息消费的并发度

梳理消息的消费耗时

通过压测获取消息的消费耗时,并对耗时较高的操作的代码逻辑进行分析。梳理消息的消费耗时需要关注以下信息:

  • 消息消费逻辑的计算复杂度是否过高,代码是否存在无限循环和递归等缺陷。
  • 消息消费逻辑中的I/O操作是否是必须的,能否用本地缓存等方案规避。
  • 消费逻辑中的复杂耗时的操作是否可以做异步化处理。如果可以,是否会造成逻辑错乱。

设置消费并发度

对于消息消费并发度的计算,可以通过以下两步实施:

  • 逐步调大单个Consumer节点的线程数,并观测节点的系统指标,得到单个节点最优的消费线程数和消息吞吐量。
  • 根据上下游链路的流量峰值计算出需要设置的节点数

    节点数 = 流量峰值 / 单个节点消息吞吐量

九、消息的清理

消息被消费过后会被清理掉吗?不会的。

消息是被顺序存储在commitlog文件的,且消息大小不定长,所以消息的清理是不可能以消息为单位进行清理的,而是以commitlog文件为单位进行清理的。否则会急剧下降清理效率,并实现逻辑复杂。

commitlog文件存在一个过期时间,默认为 72 小时,即三天。除了用户手动清理外,在以下情况下也会被自动清理,无论文件中的消息是否被消费过:

  • 文件过期,且到达清理时间点(默认为凌晨 4 点)后,自动清理过期文件
  • 文件过期,且磁盘空间占用率已达过期清理警戒线(默认75%)后,无论是否达到清理时间点,都会自动清理过期文件
  • 磁盘占用率达到清理警戒线(默认85%)后,开始按照设定好的规则清理文件,无论是否过期。默认会从最老的文件开始清理
  • 磁盘占用率达到系统危险警戒线(默认90%)后,Broker将拒绝消息写入

    需要注意以下几点:

    1 )对于RocketMQ系统来说,删除一个1G大小的文件,是一个压力巨大的IO操作。在删除过程中,系统性能会骤然下降。所以,其默认清理时间点为凌晨 4 点,访问量最小的时间。也正因如果,我们要保障磁盘空间的空闲率,不要使系统出现在其它时间点删除commitlog文件的情况。

    2 )官方建议RocketMQ服务的Linux文件系统采用ext4。因为对于文件删除操作,ext4要比ext3性能更好

相关实践学习
消息队列RocketMQ版:基础消息收发功能体验
本实验场景介绍消息队列RocketMQ版的基础消息收发功能,涵盖实例创建、Topic、Group资源创建以及消息收发体验等基础功能模块。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
目录
相关文章
|
3月前
|
消息中间件 存储 数据库
深入学习RocketMQ的底层存储设计原理
文章深入探讨了RocketMQ的底层存储设计原理,分析了其如何通过将数据和索引映射到内存、异步刷新磁盘以及消息内容的混合存储来实现高性能的读写操作,从而保证了RocketMQ作为一款低延迟消息队列的读写性能。
|
14天前
|
消息中间件 存储 Kafka
RocketMQ 工作原理图解,看这篇就够了!
本文详细解析了 RocketMQ 的核心架构、消息领域模型、关键特性和应用场景,帮助深入理解消息中间件的工作原理。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
RocketMQ 工作原理图解,看这篇就够了!
|
26天前
|
消息中间件 存储 Kafka
MQ 消息队列核心原理,12 条最全面总结!
本文总结了消息队列的12个核心原理,涵盖消息顺序性、ACK机制、持久化及高可用性等内容。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
|
1月前
|
人工智能 文字识别 Java
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
尼恩,一位拥有20年架构经验的老架构师,通过其深厚的架构功力,成功指导了一位9年经验的网易工程师转型为大模型架构师,薪资逆涨50%,年薪近80W。尼恩的指导不仅帮助这位工程师在一年内成为大模型架构师,还让他管理起了10人团队,产品成功应用于多家大中型企业。尼恩因此决定编写《LLM大模型学习圣经》系列,帮助更多人掌握大模型架构,实现职业跃迁。该系列包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构》等,旨在系统化、体系化地讲解大模型技术,助力读者实现“offer直提”。此外,尼恩还分享了多个技术圣经,如《NIO圣经》、《Docker圣经》等,帮助读者深入理解核心技术。
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
|
2月前
|
存储 NoSQL Java
分布式session-SpringSession的应用
Spring Session 提供了一种创建和管理 Servlet HttpSession 的方案,默认使用外置 Redis 存储 Session 数据,解决了 Session 共享问题。其特性包括:API 及实现用于管理用户会话、以应用容器中性方式替换 HttpSession、简化集群会话支持、管理单个浏览器实例中的多个用户会话以及通过 headers 提供会话 ID 以使用 RESTful API。Spring Session 通过 SessionRepositoryFilter 实现,拦截请求并转换 request 和 response 对象,从而实现 Session 的创建与管理。
分布式session-SpringSession的应用
|
2月前
|
存储 NoSQL Java
分布式session-SpringSession的应用
Spring Session 提供了一种创建和管理 Servlet HttpSession 的方案,默认使用外置 Redis 存储 Session 数据,解决 Session 共享问题。其主要特性包括:提供 API 和实现来管理用户会话,以中立方式替换应用程序容器中的 HttpSession,简化集群会话支持,并在单个浏览器实例中管理多个用户会话。此外,Spring Session 允许通过 headers 提供会话 ID 以使用 RESTful API。结合 Spring Boot 使用时,可通过配置 Redis 依赖和支持缓存的依赖实现 Session 共享。
分布式session-SpringSession的应用
|
1月前
|
缓存 网络协议 API
分布式系统应用之服务发现!
分布式系统应用之服务发现!
|
2月前
|
存储 运维 应用服务中间件
阿里云分布式存储应用示例
通过阿里云EDAS,您可以轻松部署与管理微服务应用。创建应用时,使用`CreateApplication`接口基于模板生成新应用,并获得包含应用ID在内的成功响应。随后,利用`DeployApplication`接口将应用部署至云端,返回&quot;Success&quot;确认部署成功。当业务调整需下线应用时,调用`ReleaseApplication`接口释放资源。阿里云EDAS简化了应用全生命周期管理,提升了运维效率与可靠性。[相关链接]提供了详细的操作与返回参数说明。
|
2月前
|
Dubbo Java 应用服务中间件
分布式(基础)-RMI简单的应用
分布式(基础)-RMI简单的应用
|
3月前
|
机器学习/深度学习 分布式计算 PyTorch
大规模数据集管理:DataLoader在分布式环境中的应用
【8月更文第29天】随着大数据时代的到来,如何高效地处理和利用大规模数据集成为了许多领域面临的关键挑战之一。本文将探讨如何在分布式环境中使用`DataLoader`来优化大规模数据集的管理与加载过程,并通过具体的代码示例展示其实现方法。
198 1

相关产品

  • 云消息队列 MQ
  • 下一篇
    无影云桌面