想要神经网络输出分类的概率值?应该这样写代码

简介: 想要神经网络输出分类的概率值?应该这样写代码

我们构造一个简单的神经网络,通常情况下n_output是分类数量,例如二分类任务那n_output=2、六分类任务那么n_output=6


class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.inLayer = torch.nn.Linear(n_feature, n_hidden) # 输入层
        self.hiddenLayer = torch.nn.Linear(n_hidden, n_hidden) # 隐藏层
        self.outLayer = torch.nn.Linear(n_hidden, n_output) # 输出层
    # 前向计算函数,定义完成后会隐式地自动生成反向传播函数
    def forward(self, x):
        x = F.relu(self.hiddenLayer(self.inLayer(x)))
        x = self.outLayer(x)
        return x


假设要进行一个二分类任务,这时的输出x的值是类别0和类别1的预测值,我们可以使用softmax函数将其转换为概率值:


class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.inLayer = torch.nn.Linear(n_feature, n_hidden) # 输入层
        self.hiddenLayer = torch.nn.Linear(n_hidden, n_hidden) # 隐藏层
        self.outLayer = torch.nn.Linear(n_hidden, n_output) # 输出层
    # 前向计算函数,定义完成后会隐式地自动生成反向传播函数
    def forward(self, x):
        x = F.relu(self.hiddenLayer(self.inLayer(x)))
        x = self.outLayer(x)
        prob = F.softmax(x, dim=1) # softmax将预测值转换为概率
        out = torch.unsqueeze(prob.argmax(dim=1), dim=1) # argmax选取概率最大的预测项,unsqueeze扩维
        return out


输出结果例如:


# prob = F.softmax(x, dim=1)的输出结果
# print(prob)
tensor([[0.5059, 0.4941],
        [0.5018, 0.4982],
        [0.4886, 0.5114]], grad_fn=<SoftmaxBackward0>)
# out = torch.unsqueeze(prob.argmax(dim=1), dim=1)的输出结果
# print(out)
tensor([[0],
        [0],
        [1]])
相关文章
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
|
3月前
|
网络协议
计算机网络的分类
【10月更文挑战第11天】 计算机网络可按覆盖范围(局域网、城域网、广域网)、传输技术(有线、无线)、拓扑结构(星型、总线型、环型、网状型)、使用者(公用、专用)、交换方式(电路交换、分组交换)和服务类型(面向连接、无连接)等多种方式进行分类,每种分类方式揭示了网络的不同特性和应用场景。
|
1月前
|
机器学习/深度学习 Serverless 索引
分类网络中one-hot编码的作用
在分类任务中,使用神经网络时,通常需要将类别标签转换为一种合适的输入格式。这时候,one-hot编码(one-hot encoding)是一种常见且有效的方法。one-hot编码将类别标签表示为向量形式,其中只有一个元素为1,其他元素为0。
55 2
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
76 3
|
3月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
132 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
3月前
|
机器学习/深度学习 Serverless 索引
分类网络中one-hot的作用
在分类任务中,使用神经网络时,通常需要将类别标签转换为一种合适的输入格式。这时候,one-hot编码(one-hot encoding)是一种常见且有效的方法。one-hot编码将类别标签表示为向量形式,其中只有一个元素为1,其他元素为0。
92 3
|
4月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
136 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
3月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
86 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习入门案例:运用神经网络实现价格分类
深度学习入门案例:运用神经网络实现价格分类
|
4月前
|
安全 C#
某网络硬盘网站被植入传播Trojan.DL.Inject.xz等的代码
某网络硬盘网站被植入传播Trojan.DL.Inject.xz等的代码