数据结构上机实践第14周项目1(2) - 验证算法(分块查找)

简介: 数据结构上机实践第14周项目1(2) - 验证算法(分块查找)

验证算法(分块查找)

项目要求如下:

请用22,4,23,11,20,2,15,13,30,45,26,34,29,35,26,36,55,98,56, 74,61,90,80,96,127,158,116,114,128,113,115,102,184,211,243,188,187,218,195,210,279,307,492,452,408,361,421,399,856,523,704,703,697,535,534,739(共n=56个数据,每块数据个数s=8)作为数据表,自行构造索引表,分别对查找61、739、200进行测试。

实现源代码如下:

//*Copyright  (c)2017,烟台大学计算机与控制工程学院*                       
//*All rights reservrd.*                       
//*文件名称 :main.cpp*                       
//*作者:田长航*                    
//*完成时间:2017年11月29日*                        
//*版本号:v1.0*                    
//*问题描述:测试函数*                       
//*输入描述:无*                       
//*程序输出:无*
#include <stdio.h>
#define MAXL 100    //数据表的最大长度
#define MAXI 20     //索引表的最大长度
typedef int KeyType;
typedef char InfoType[10];
typedef struct
{
    KeyType key;                //KeyType为关键字的数据类型
    InfoType data;              //其他数据
} NodeType;
typedef NodeType SeqList[MAXL]; //顺序表类型
typedef struct
{
    KeyType key;            //KeyType为关键字的类型
    int link;               //指向对应块的起始下标
} IdxType;
typedef IdxType IDX[MAXI];  //索引表类型
int IdxSearch(IDX I,int m,SeqList R,int n,KeyType k)
{
    int low=0,high=m-1,mid,i;
    int b=n/m;              //b为每块的记录个数
    while (low<=high)       //在索引表中进行二分查找,找到的位置存放在low中
    {
        mid=(low+high)/2;
        if (I[mid].key>=k)
            high=mid-1;
        else
            low=mid+1;
    }
    //应在索引表的high+1块中,再在线性表中进行顺序查找
    i=I[high+1].link;
    while (i<=I[high+1].link+b-1 && R[i].key!=k) i++;
    if (i<=I[high+1].link+b-1)
        return i+1;
    else
        return 0;
}
int main()
{
    int i,n=25,m=5,j;
    SeqList R;
    IDX I= {{14,0},{34,5},{66,10},{85,15},{100,20}};
    KeyType a[]= {8,14,6,9,10,22,34,18,19,31,40,38,54,66,46,71,78,68,80,85,100,94,88,96,87};
    KeyType x=85;
    for (i=0; i<n; i++)
        R[i].key=a[i];
    j=IdxSearch(I,m,R,n,x);
    if (j!=0)
        printf("%d是第%d个数据\n",x,j);
    else
        printf("未找到%d\n",x);
    return 0;
}

运行结果如下:

2018122814580746.png

相关文章
|
4月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
136 3
|
23天前
|
算法 搜索推荐 Java
【潜意识Java】深度解析黑马项目《苍穹外卖》与蓝桥杯算法的结合问题
本文探讨了如何将算法学习与实际项目相结合,以提升编程竞赛中的解题能力。通过《苍穹外卖》项目,介绍了订单配送路径规划(基于动态规划解决旅行商问题)和商品推荐系统(基于贪心算法)。这些实例不仅展示了算法在实际业务中的应用,还帮助读者更好地准备蓝桥杯等编程竞赛。结合具体代码实现和解析,文章详细说明了如何运用算法优化项目功能,提高解决问题的能力。
55 6
|
1月前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
2月前
|
算法 安全 Go
Go 语言中实现 RSA 加解密、签名验证算法
随着互联网的发展,安全需求日益增长。非对称加密算法RSA成为密码学中的重要代表。本文介绍如何使用Go语言和[forgoer/openssl](https://github.com/forgoer/openssl)库简化RSA加解密操作,包括秘钥生成、加解密及签名验证。该库还支持AES、DES等常用算法,安装简便,代码示例清晰易懂。
64 12
|
2月前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
263 30
|
2月前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
495 15
|
5月前
|
算法 JavaScript 前端开发
第一个算法项目 | JS实现并查集迷宫算法Demo学习
本文是关于使用JavaScript实现并查集迷宫算法的中国象棋demo的学习记录,包括项目运行方法、知识点梳理、代码赏析以及相关CSS样式表文件的介绍。
第一个算法项目 | JS实现并查集迷宫算法Demo学习
|
4月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
4月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
4月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
102 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练