数据结构上机实践第八周项目9-广义表算法库及应用

简介: 数据结构上机实践第八周项目9-广义表算法库及应用

广义表算法库及应用

为了丰富算法库,以应对各类工程的需要,本次实践将进行广义表算法库的建立以及应用。

项目要求一:

建立广义表算法库,包括:

① 头文glist.h,定义数据类型,声明函数;

② 源文件glist.cpp,实现广义表的基本运算,主要算法包括:

int GLLength(GLNode *g);    //求广义表g的长度
int GLDepth(GLNode *g);     //求广义表g的深度
GLNode *CreateGL(char *&s); //返回由括号表示法表示s的广义表链式存储结构
void DispGL(GLNode *g);     //输出广义表g

本次算法库的建设需要应用多文件组织工程,这里不再介绍详细过程,可以点击此处参考。

建立好之后的工作空间截图如下:

image.png

实现的源代码如下:

1.glist.h

//*Copyright  (c)2017,烟台大学计算机与控制工程学院*               
//*All rights reservrd.*               
//*文件名称 :glist.h*               
//*作者:田长航*            
//*完成时间:2017年10月23日*                
//*版本号:v1.0*            
//*问题描述:包含定义广义表表示数据结构的代码、宏定义、要实现算法的函数的声明*               
//*输入描述:无*               
//*程序输出:无
#ifndef GLIST_H_INCLUDED
#define GLIST_H_INCLUDED
typedef char ElemType;
typedef struct lnode
{
    int tag;                    //节点类型标识
    union
    {
        ElemType data;          //原子值
        struct lnode *sublist;  //指向子表的指针
    } val;
    struct lnode *link;         //指向下一个元素
} GLNode;                       //广义表节点类型定义
int GLLength(GLNode *g);        //求广义表g的长度
int GLDepth(GLNode *g);     //求广义表g的深度
GLNode *CreateGL(char *&s);     //返回由括号表示法表示s的广义表链式存储结构
void DispGL(GLNode *g);                 //输出广义表g
#endif // GLIST_H_INCLUDED

2.glist.cpp

//*Copyright  (c)2017,烟台大学计算机与控制工程学院*               
//*All rights reservrd.*               
//*文件名称 :glist.cpp*               
//*作者:田长航*            
//*完成时间:2017年10月23日*                
//*版本号:v1.0*            
//*问题描述:包含各类函数的实现*               
//*输入描述:无*               
//*程序输出:无
#include <stdio.h>
#include <malloc.h>
#include "glist.h"
int GLLength(GLNode *g)     //求广义表g的长度
{
    int n=0;
    GLNode *g1;
    g1=g->val.sublist;      //g指向广义表的第一个元素
    while (g1!=NULL)
    {
        n++;                //累加元素个数
        g1=g1->link;
    }
    return n;
}
int GLDepth(GLNode *g)      //求广义表g的深度
{
    GLNode *g1;
    int max=0,dep;
    if (g->tag==0)          //为原子时返回0
        return 0;
    g1=g->val.sublist;      //g1指向第一个元素
    if (g1==NULL)           //为空表时返回1
        return 1;
    while (g1!=NULL)        //遍历表中的每一个元素
    {
        if (g1->tag==1)     //元素为子表的情况
        {
            dep=GLDepth(g1);    //递归调用求出子表的深度
            if (dep>max)    //max为同一层所求过的子表中深度的最大值
                max=dep;
        }
        g1=g1->link;            //使g1指向下一个元素
    }
    return(max+1);          //返回表的深度
}
GLNode *CreateGL(char *&s)      //返回由括号表示法表示s的广义表链式存储结构
{
    GLNode *g;
    char ch=*s++;                       //取一个字符
    if (ch!='\0')                      //串未结束判断
    {
        g=(GLNode *)malloc(sizeof(GLNode));//创建一个新节点
        if (ch=='(')                    //当前字符为左括号时
        {
            g->tag=1;                   //新节点作为表头节点
            g->val.sublist=CreateGL(s); //递归构造子表并链到表头节点
        }
        else if (ch==')')
            g=NULL;                     //遇到')'字符,g置为空
        else if (ch=='#')               //遇到'#'字符,表示为空表
            g=NULL;
        else                            //为原子字符
        {
            g->tag=0;                   //新节点作为原子节点
            g->val.data=ch;
        }
    }
    else                                 //串结束,g置为空
        g=NULL;
    ch=*s++;                            //取下一个字符
    if (g!=NULL)                        //串未结束,继续构造兄弟节点
    {
        if (ch==',')                    //当前字符为','
            g->link=CreateGL(s);        //递归构造兄弟节点
        else                            //没有兄弟了,将兄弟指针置为NULL
            g->link=NULL;
    }
    return g;                           //返回广义表g
}
void DispGL(GLNode *g)                  //输出广义表g
{
    if (g!=NULL)                        //表不为空判断
    {
        //先处理g的元素
        if (g->tag==0)                  //g的元素为原子时
            printf("%c", g->val.data);  //输出原子值
        else                            //g的元素为子表时
        {
            printf("(");                //输出'('
            if (g->val.sublist==NULL)   //为空表时
                printf("#");
            else                        //为非空子表时
                DispGL(g->val.sublist); //递归输出子表
            printf(")");                //输出')'
        }
        if (g->link!=NULL)
        {
            printf(",");
            DispGL(g->link);            //递归输出后续表的内容
        }
    }
}

3.main.cpp

//*Copyright  (c)2017,烟台大学计算机与控制工程学院*               
//*All rights reservrd.*               
//*文件名称 :main.cpp*               
//*作者:田长航*            
//*完成时间:2017年10月23日*                
//*版本号:v1.0*            
//*问题描述:测试函数*               
//*输入描述:无*               
//*程序输出:无
#include <stdio.h>
#include "glist.h"
int main()
{
    GLNode *g;
    char *s="(b,(b,a,(#),d),((a,b),c((#))))";
    g = CreateGL(s);
    DispGL(g);
    printf("广义表长度:%d\n", GLLength(g));
    printf("广义表深度:%d\n", GLDepth(g));
    return 0;
}

测试结果截图如下:

image.png

项目要求二:

设计一个算法,求出给定广义表g中的原子个数
设计一个算法,求出给定广义表g中的最大原子

用以上的算法库,利用测试函数来实现要求

源代码:main.cpp

//*Copyright  (c)2017,烟台大学计算机与控制工程学院*
//*All rights reservrd.*
//*文件名称 :main.cpp*
//*作者:田长航*
//*完成时间:2017年10月23日*
//*版本号:v1.0*
//*问题描述:测试函数*
//*输入描述:无*
//*程序输出:无
#include <stdio.h>
#include "glist.h"
int atomnum(GLNode *g)  //求广义表g中的原子个数
{
    if (g!=NULL)
    {
        if (g->tag==0)
            return 1+atomnum(g->link);
        else
            return atomnum(g->val.sublist)+atomnum(g->link);
    }
    else
        return 0;
}
ElemType maxatom(GLNode *g)             //求广义表g中最大原子
{
    ElemType max1,max2;
    if (g!=NULL)
    {
        if (g->tag==0)
        {
            max1=maxatom(g->link);
            return(g->val.data>max1?g->val.data:max1);
        }
        else
        {
            max1=maxatom(g->val.sublist);
            max2=maxatom(g->link);
            return(max1>max2?max1:max2);
        }
    }
    else
        return 0;
}
int main()
{
    GLNode *g;
    char *s="(b,(b,a,(#),d),((a,b),c((#))))";
    g = CreateGL(s);
    DispGL(g);
    printf("\n");
    printf("原子个数 :%d\n", atomnum(g));
    printf("最大原子 :%c\n", maxatom(g));
    return 0;
}

运行结果截图如下:

image.png

相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【自然语言处理】TF-IDF算法在人工智能方面的应用,附带代码
TF-IDF算法在人工智能领域,特别是自然语言处理(NLP)和信息检索中,被广泛用于特征提取和文本表示。以下是一个使用Python的scikit-learn库实现TF-IDF算法的简单示例,并展示如何将其应用于文本数据。
215 65
|
5天前
|
机器学习/深度学习 算法 Java
[算法与数据结构] 谈谈线性查找法~
该文章详细介绍了线性查找法的基本概念与实现方法,通过Java代码示例解释了如何在一个数组中查找特定元素,并分析了该算法的时间复杂度。
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的优化算法及其应用
本文旨在探讨深度学习中常用的优化算法,包括梯度下降、动量方法、AdaGrad、RMSProp和Adam等。通过分析每种算法的原理、优缺点及适用场景,揭示它们在训练深度神经网络过程中的关键作用。同时,结合具体实例展示这些优化算法在实际应用中的效果,为读者提供选择合适优化算法的参考依据。
|
6天前
|
算法 前端开发 机器人
一文了解分而治之和动态规则算法在前端中的应用
该文章详细介绍了分而治之策略和动态规划算法在前端开发中的应用,并通过具体的例子和LeetCode题目解析来说明这两种算法的特点及使用场景。
一文了解分而治之和动态规则算法在前端中的应用
|
13天前
|
算法 调度
贪心算法基本概念与应用场景
尽管贪心算法在许多问题中都非常有效,但它并不总是会产生最优解。因此,在应用贪心算法前,重要的是先分析问题是否适合采用贪心策略。一些问题可能需要通过动态规划或回溯等其他算法来解决,以找到确切的全局最优解。
44 1
WK
|
16天前
|
机器学习/深度学习 算法 数据挖掘
PSO算法的应用场景有哪些
粒子群优化算法(PSO)因其实现简单、高效灵活,在众多领域广泛应用。其主要场景包括:神经网络训练、工程设计、电力系统经济调度与配电网络重构、数据挖掘中的聚类与分类、控制工程中的参数整定、机器人路径规划、图像处理、生物信息学及物流配送和交通管理等。PSO能处理复杂优化问题,快速找到全局最优解或近似解,展现出强大的应用潜力。
WK
19 1
|
25天前
|
机器学习/深度学习 算法 Python
群智能算法:深入解读人工水母算法:原理、实现与应用
近年来,受自然界生物行为启发的优化算法备受关注。人工水母算法(AJSA)模拟水母在海洋中寻找食物的行为,是一种新颖的优化技术。本文详细解读其原理及实现步骤,并提供代码示例,帮助读者理解这一算法。在多模态、非线性优化问题中,AJSA表现出色,具有广泛应用前景。
|
6天前
|
算法 前端开发
一文了解贪心算法和回溯算法在前端中的应用
该文章深入讲解了贪心算法与回溯算法的原理及其在前端开发中的具体应用,并通过分析LeetCode题目来展示这两种算法的解题思路与实现方法。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
2月前
|
算法 C++
A : DS串应用–KMP算法
这篇文章提供了KMP算法的C++实现,包括计算模式串的next数组和在主串中查找模式串位置的函数,用于演示KMP算法的基本应用。
下一篇
无影云桌面