嵌入式开发学习之--IIC读写EEPROM(上)

本文涉及的产品
数据传输服务 DTS,数据迁移 small 3个月
推荐场景:
MySQL数据库上云
数据传输服务 DTS,数据同步 small 3个月
推荐场景:
数据库上云
数据传输服务 DTS,数据同步 1个月
简介: 嵌入式开发学习之--IIC读写EEPROM(上)

嵌入式开发学习之--IIC读写EEPROM(上)


提示:本章主要学习IIC协议,了解其原理以及使用方法。

文章目录

前言

一、IIC协议简介

1.1、IIC物理层

1.2、协议层

1.2.1、I2C 基本读写过程

1.2.2、通讯起始和终止信号

1.2.3、数据有效性

1.2.4、地址及数据方向

1.2.5、响应

总结

前言

 IIC协议的思想很厉害,对比串口三根线且只能点对点连接,它实现了一根时钟线一根数据线,理论上来说可以无限挂载设备。但是根据工作经验来看,其可靠性并不高,传输距离有限且易受干扰,而且固定设备号这一点也是很别扭,相对来说CAN协议比他要强很多。不过市场上仍然有很多IIC通信的设备,最常见的也就是读写RRPROM,所以我们必须要熟练掌握这种通信方式。

 提示:以下是本篇文章正文内容,下面案例可供参考

一、IIC协议简介

 I2C 通讯协议(Inter-Integrated Circuit)是由 Phiilps 公司开发的,由于它引脚少,硬件实现简单,可扩展性强,不需要 USART、CAN 等通讯协议的外部收发设备,现在被广泛地使用在系统内多个集成电路(IC)间的通讯。

1.1、IIC物理层

如图,IIC的物理层特点有:

   (1) 、它是一个支持多设备的总线。“总线”指多个设备共用的信号线。在一个 IIC 通讯总线中,可连接多个 IIC 通讯设备,支持多个通讯主机及多个通讯从机。

   (2) 、一个 IIC 总线只使用两条总线线路,一条双向串行数据线(SDA) ,一条串行时钟线(SCL)。数据线即用来表示数据,时钟线用于数据收发同步。

   (3) 、每个连接到总线的设备都有一个独立的地址,主机可以利用这个地址进行不同设备之间的访问。

   (4)、 总线通过上拉电阻接到电源。当 IIC 设备空闲时,会输出高阻态,而当所有设备都空闲,都输出高阻态时,由上拉电阻把总线拉成高电平。

   (5) 、多个主机同时使用总线时,为了防止数据冲突,会利用仲裁方式决定由哪个设备占用总线。

   (6)、 具有三种传输模式:标准模式传输速率为 100kbit/s ,快速模式为 400kbit/s ,高速模式下可达 3.4Mbit/s,但目前大多 IIC 设备尚不支持高速模式。

   (7) 、连接到相同总线的 IIC 数量受到总线的最大电容 400pF 限制 。

1.2、协议层

 IIC 的协议定义了通讯的起始和停止信号、数据有效性、响应、仲裁、时钟同步和地址广播等环节。

1.2.1、I2C 基本读写过程

其中 S 表示由主机的 I2C 接口产生的传输起始信号(S),这时连接到 I2C 总线上的所有从机都会接收到这个信号。起始信号产生后,所有从机就开始等待主机紧接下来广播 的从机地址信号(SLAVE_ADDRESS)。在 I2C 总线上,每个设备的地址都是唯一的,当主机广播的地址与某个设备地址相同时,这个设备就被选中了,没被选中的设备将会忽略之后的数据信号。根据 I2C 协议,这个从机地址可以是 7 位或 10 位。在地址位之后,是传输方向的选择位,该位为 0 时,表示后面的数据传输方向是由主机传输至从机,即主机向从机写数据。该位为 1 时,则相反,即主机由从机读数据。从机接收到匹配的地址后,主机或从机会返回一个应答(ACK)或非应答(NACK)信号,只有接收到应答信号后,主机才能继续发送或接收数据。

 若配置的方向传输位为“写数据”方向,即第一幅图的情况,广播完地址,接收到应答信号后,主机开始正式向从机传输数据(DATA),数据包的大小为 8 位,主机每发送完一个字节数据,都要等待从机的应答信号(ACK),重复这个过程,可以向从机传输 N 个数据,这个 N 没有大小限制。当数据传输结束时,主机向从机发送一个停止传输信号§,表示不再传输数据。

 若配置的方向传输位为“读数据”方向,即第二幅图的情况,广播完地址,接收到应答信号后,从机开始向主机返回数据(DATA),数据包大小也为 8 位,从机每发送完一个数据,都会等待主机的应答信号(ACK),重复这个过程,可以返回 N 个数据,这个 N 也没有大小限制。当主机希望停止接收数据时,就向从机返回一个非应答信号(NACK),则从机自动停止数据传输。

 除了基本的读写,I2C 通讯更常用的是复合格式,即第三幅图的情况,该传输过程有两次起始信号(S)。一般在第一次传输中,主机通过 SLAVE_ADDRESS 寻找到从设备后,发送一段“数据”,这段数据通常用于表示从设备内部的寄存器或存储器地址(注意区分它与 SLAVE_ADDRESS 的区别);在第二次的传输中,对该地址的内容进行读或写。也就是说,第一次通讯是告诉从机读写地址,第二次则是读写的实际内容。

1.2.2、通讯起始和终止信号

 前文中提到的起始(S)和停止§信号是两种特殊的状态,见图 23-5。当 SCL 线是高电平时 SDA 线从高电平向低电平切换,这个情况表示通讯的起始。当 SCL 是高电平时 SDA 线由低电平向高电平切换,表示通讯的停止。起始和停止信号一般由主机产生。

1.2.3、数据有效性

 haC 使用 SDA 信号线来传输数据,使用 SCL 信号线进行数据同步ha。见图 23-6。SDA数据线在 SCL 的每个时钟周期传输一位数据。传输时,SCL 为高电平的时候 SDA 表示的数据有效,即此时的 SDA 为高电平时表示数据“1”,为低电平时表示数据“0”。当 SCL为低电平时,SDA 的数据无效,一般在这个时候 SDA 进行电平切换,为下一次表示数据做好准备。

1.2.4、地址及数据方向

 I2C 总线上的每个设备都有自己的独立地址,主机发起通讯时,通过 SDA 信号线发送设备地址(SLAVE_ADDRESS)来查找从机。I2C 协议规定设备地址可以是 7 位或 10 位,实际中 7 位的地址应用比较广泛。紧跟设备地址的一个数据位用来表示数据传输方向,它是数据方向位(R/W),第 8 位或第 11 位。数据方向位为“1”时表示主机由从机读数据,该位为“0”时表示主机向从机写数据。

1.2.5、响应

 I2C 的数据和地址传输都带响应。响应包括“应答(ACK)”和“非应答(NACK)”两种信号。作为数据接收端时,当设备(无论主从机)接收到 I2C 传输的一个字节数据或地址后,若希望对方继续发送数据,则需要向对方发送“应答(ACK)”信号,发送方会继续发送下一个数据;若接收端希望结束数据传输,则向对方发送“非应答(NACK)”信号,发送方接收到该信号后会产生一个停止信号,结束信号传输。

总结

 本片了解了IIC的特性,下一篇结合代码实验来进一步学习IIC协议。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
存储 芯片 内存技术
Jlink使用技巧之读写SPI Flash存储芯片
Jlink使用技巧之读写SPI Flash存储芯片
1088 0
Jlink使用技巧之读写SPI Flash存储芯片
|
5月前
|
数据采集 计算机视觉 异构计算
FPGA进阶(2):基于I2C协议的EEPROM驱动控制
FPGA进阶(2):基于I2C协议的EEPROM驱动控制
78 0
|
Android开发 异构计算
nios ii FIFO读取FPGA数据交互实验1
nios ii FIFO读取FPGA数据交互实验1
268 0
nios ii FIFO读取FPGA数据交互实验1
|
存储 芯片 内存技术
STM32F0单片机快速入门十 用 SPI HAL 库读写W25Q128
STM32F0单片机快速入门十 用 SPI HAL 库读写W25Q128
|
存储 内存技术
STM32F0单片机快速入门九 用 I2C HAL 库读写24C02
STM32F0单片机快速入门九 用 I2C HAL 库读写24C02
|
存储 芯片
STM32入门开发: 采用IIC硬件时序读写AT24C08(EEPROM)
STM32入门开发: 采用IIC硬件时序读写AT24C08(EEPROM)
515 0
STM32入门开发: 采用IIC硬件时序读写AT24C08(EEPROM)
|
异构计算
nios ii小实验——SDRAM读写
nios ii小实验——SDRAM读写
257 0
nios ii小实验——SDRAM读写
|
存储 芯片
stm32f407探索者开发板(三)——GPIO工作原理(内部结构说明、八种输入输出分析、GPIO寄存器说明)(上)
stm32f407探索者开发板(三)——GPIO工作原理(内部结构说明、八种输入输出分析、GPIO寄存器说明)(上)
850 0
stm32f407探索者开发板(三)——GPIO工作原理(内部结构说明、八种输入输出分析、GPIO寄存器说明)(上)
|
人工智能
stm32f407探索者开发板(三)——GPIO工作原理(内部结构说明、八种输入输出分析、GPIO寄存器说明)(下)
stm32f407探索者开发板(三)——GPIO工作原理(内部结构说明、八种输入输出分析、GPIO寄存器说明)(下)
400 0
stm32f407探索者开发板(三)——GPIO工作原理(内部结构说明、八种输入输出分析、GPIO寄存器说明)(下)
|
存储 缓存 内存技术
嵌入式开发学习之--DMA(上)
嵌入式开发学习之--DMA(上)
嵌入式开发学习之--DMA(上)
下一篇
DataWorks