【JVM原理探索】分析堆外内存(Direct Memory)使用和分析

简介: 【JVM原理探索】分析堆外内存(Direct Memory)使用和分析

堆外内存


堆外内存,其实就是不受JVM控制的内存。简单来说,除了堆栈内存,剩下的就都是堆外内存了(当然,这是从Java运行时内存的角度来看),堆外内存直接受操作系统管理,而不是虚拟机。而使用堆外内存的原因,




相比于堆内内存有几个优势:


  1. 减少了垃圾回收的工作,因为垃圾回收会暂停其他的工作(可能使用多线程或者时间片的方式,根本感觉不到)

堆外内存是直接受操作系统管理的,而不是JVM,因此使用堆外内存的话,就可以保持一个比较小的堆内内存,减少垃圾回收对程序性能的影响


  1. 就是提高IO操作的效率!这里就涉及用户态与内核态,以及内核缓冲区的概念,如果从堆内向磁盘写数据,数据会被先复制到堆外内存,即内核缓冲区,然后再由OS写入磁盘,但使用堆外内存的话则可以避免这个复制操作。


堆内内存其实就是用户进程的【进程缓冲区】,属于用户态;堆外内存由操作系统管理【内核缓冲区】,属于内核态。

image.png


自然也有不好的一面:


  1. 堆外内存难以控制,如果内存泄漏,那么很难排查
  2. 堆外内存相对来说,不适合存储很复杂的对象。一般简单的对象或者扁平化的比较适合
  3. 因为是操作系统的内存机制,所以需要通过本地方法进行分配,较为复杂和缓慢




直接内存使用


  1. 堆外内存通过java.nioByteBuffer来创建,调用allocateDirect方法申请即可。
  2. 可以通过设置-XX:MaxDirectMemorySize=10M控制堆外内存的大小。


堆外内存的垃圾回收


  1. 由于堆外内存并不直接控制于JVM,因此只能等到full GC的时候才能垃圾回收!Full GC,一般发生在年老代垃圾回收以及调用System.gc的时候,这样肯定不能满足我们的需求!
  2. 手动的控制回收堆外内存了!其中sun.nio其实是java.nio的内部实现。
package xing.test;
import java.nio.ByteBuffer;
import sun.nio.ch.DirectBuffer;
public class NonHeapTest {
  public static void clean(final ByteBuffer byteBuffer) { 
    if (byteBuffer.isDirect()) { 
      ((DirectBuffer)byteBuffer).cleaner().clean(); 
    } 
 } 
  public static void sleep(long i) { 
    try { 
       Thread.sleep(i); 
     }catch(Exception e) { 
       /*skip*/
     } 
  } 
  public static void main(String []args) throws Exception { 
      ByteBuffer buffer = ByteBuffer.allocateDirect(1024 * 1024 * 200); 
      System.out.println("start"); 
      sleep(5000); 
      clean(buffer);//执行垃圾回收
//     System.gc();//执行Full gc进行垃圾回收
      System.out.println("end"); 
      sleep(5000); 
  } 
}
复制代码





零拷贝


  1. 用户进程需要像磁盘写数据时,需要将用户缓冲区(进程缓冲区)堆内内存中的内容拷贝到内核缓冲区(堆外内存)中,操作系统调度内核再将内核缓冲区中的内容写进磁盘中
  2. 通过在用户进程中,直接申请堆外内存,存储其需要写进磁盘的数据,就能够省掉上述拷贝操作





实现方式


Java提供了一些使用堆外内存以及【DMA】的方法,能够在很大程度上优化用户进程的IO效率。这里,给出一份拷贝文件的代码,分别使用BIO、NIO和使用堆外内存的NIO进行文件复制,简单对比其耗时。


使用一个200MB左右的pdf文件进行拷贝操作,你可以另外指定更大的文件,文件越大对比越明显。这里我运行出来的延时,BIO的平均耗时1500ms上下,NIO耗时120ms左右, 使用堆外内存的NIO耗时100ms上下。


package top.jiangnanmax.nio;
import java.io.*;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;
public class CopyCompare {
    public static void main(String[] args) throws Exception {
        String inputFile = "/tmp/nio/input/HyperLedger.pdf";
        String outputFile = "/tmp/nio/output/HyperLedger.pdf";
        long start = System.currentTimeMillis();
        nioCopyByDirectMem(inputFile, outputFile);
        long end = System.currentTimeMillis();
        System.out.println("cost time: " + (end - start) + " ms");
        deleteFile(outputFile);
    }
    /**
     * 使用传统IO进行文件复制
     *
     * 平均耗时 15** ms
     *
     * @param sourcePath
     * @param destPath
     */
    private static void bioCopy(String sourcePath, String destPath) throws Exception {
        File sourceFile = new File(sourcePath);
        File destFile = new File(destPath);
        if (!destFile.exists()) {
            destFile.createNewFile();
        }
        FileInputStream inputStream = new FileInputStream(sourceFile);
        FileOutputStream outputStream = new FileOutputStream(destFile);
        byte[] buffer = new byte[512];
        int lenRead;
        while ((lenRead = inputStream.read(buffer)) != -1) {
            outputStream.write(buffer, 0, lenRead);
        }
        inputStream.close();
        outputStream.close();
    }
    /**
     * 使用NIO进行文件复制,但不使用堆外内存
     * 平均耗时 1** ms, 比BIO直接快了一个数量级???
     * @param sourcePath
     * @param destPath
     */
    private static void nioCopy(String sourcePath, String destPath) throws Exception {
        File sourceFile = new File(sourcePath);
        File destFile = new File(destPath);
        if (!destFile.exists()) {
            destFile.createNewFile();
        }
        FileInputStream inputStream = new FileInputStream(sourceFile);
        FileOutputStream outputStream = new FileOutputStream(destFile);
        FileChannel inputChannel = inputStream.getChannel();
        FileChannel outputChannel = outputStream.getChannel();
        // transferFrom底层调用的应该是sendfile
        // 直接在两个文件描述符之间进行了数据传输
        // DMA
        outputChannel.transferFrom(inputChannel, 0, inputChannel.size());
        inputChannel.close();
        outputChannel.close();
        inputStream.close();
        outputStream.close();
    }
    /**
     * 使用NIO进行文件复制,并使用堆外内存
     * 平均耗时100ms上下,比没使用堆外内存的NIO快一点
     * @param sourcePath
     * @param destPath
     */
    private static void nioCopyByDirectMem(String sourcePath, String destPath) throws Exception {
        File sourceFile = new File(sourcePath);
        File destFile = new File(destPath);
        if (!destFile.exists()) {
            destFile.createNewFile();
        }
        FileInputStream inputStream = new FileInputStream(sourceFile);
        FileOutputStream outputStream = new FileOutputStream(destFile);
        FileChannel inputChannel = inputStream.getChannel();
        FileChannel outputChannel = outputStream.getChannel();
        MappedByteBuffer buffer = inputChannel.map(FileChannel.MapMode.READ_ONLY, 0, inputChannel.size());
        outputChannel.write(buffer);
        inputChannel.close();
        outputChannel.close();
        inputStream.close();
        outputStream.close();
    }
    /**
     * 删除目标文件
     *
     * @param target
     */
    private static void deleteFile(String target) {
        File file = new File(target);
        file.delete();
    }
}





相关文章
|
3天前
|
算法 调度 UED
深入理解操作系统内存管理:原理与实践
【4月更文挑战第23天】 在现代计算机系统中,操作系统的内存管理是保证系统高效、稳定运行的关键组成部分。本文旨在深入探讨操作系统中内存管理的理论基础、关键技术以及实际操作过程,通过对内存分配策略、虚拟内存技术、分页与分段机制等核心概念的详细解析,为读者提供一个清晰、全面的内存管理视角。此外,文章还将通过案例分析,展示内存管理在解决实际问题中的应用,以期加深读者对操作系统内存管理复杂性的认识和理解。
|
28天前
|
存储 缓存 Java
金石原创 |【JVM盲点补漏系列】「并发编程的难题和挑战」深入理解JMM及JVM内存模型知识体系机制(1)
金石原创 |【JVM盲点补漏系列】「并发编程的难题和挑战」深入理解JMM及JVM内存模型知识体系机制(1)
37 1
|
28天前
|
缓存 Java C#
【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍(一)
【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍
79 0
|
9天前
|
JavaScript 前端开发
FATAL ERROR: CALL_AND_RETRY_LAST Allocation failed - JavaScript heap out of memory 内存溢出问题
FATAL ERROR: CALL_AND_RETRY_LAST Allocation failed - JavaScript heap out of memory 内存溢出问题
14 1
|
10天前
|
监控 前端开发 安全
JVM工作原理与实战(十四):JDK9及之后的类加载器
JVM作为Java程序的运行环境,其负责解释和执行字节码,管理内存,确保安全,支持多线程和提供性能监控工具,以及确保程序的跨平台运行。本文主要介绍了JDK8及之前的类加载器、JDK9及之后的类加载器等内容。
19 2
|
10天前
|
监控 Java 关系型数据库
JVM工作原理与实战(十三):打破双亲委派机制-线程上下文类加载器
JVM作为Java程序的运行环境,其负责解释和执行字节码,管理内存,确保安全,支持多线程和提供性能监控工具,以及确保程序的跨平台运行。本文主要介绍了打破双亲委派机制的方法、线程上下文类加载器等内容。
14 2
|
10天前
|
存储 XML 监控
JVM工作原理与实战(三):字节码文件的组成
JVM作为Java程序的运行环境,其负责解释和执行字节码,管理内存,确保安全,支持多线程和提供性能监控工具,以及确保程序的跨平台运行。本文主要介绍了字节码文件的基础信息、常量池、方法、字段、属性等内容。
26 6
|
14天前
|
存储 前端开发 安全
JVM内部世界(内存划分,类加载,垃圾回收)(上)
JVM内部世界(内存划分,类加载,垃圾回收)
48 0
|
18天前
|
存储 算法
深入理解操作系统内存管理:原理与实践
【4月更文挑战第8天】 在现代计算机系统中,操作系统扮演着关键角色,特别是在内存资源的管理上。本文将深入探讨操作系统中的内存管理机制,包括虚拟内存、物理内存的分配与回收,以及页面置换算法等关键技术。通过分析不同内存管理策略的优势与局限性,本文旨在为读者提供一套系统的内存管理知识框架,帮助理解操作系统如何高效、安全地管理有限的内存资源以满足多任务处理的需求。
|
24天前
|
存储 算法 安全
深入理解操作系统内存管理:原理与实践
【4月更文挑战第2天】 在现代计算机系统中,操作系统的内存管理是核心功能之一,它负责协调和分配系统内存资源。本文将探讨操作系统内存管理的基本原理,包括内存的分配与回收、分页机制、虚拟内存的使用以及内存保护。通过对这些概念的细致剖析,我们不仅能够理解操作系统如何高效利用有限的物理内存,还能够认识到内存管理对系统稳定性和性能的重要性。文章还将简要讨论现代操作系统中内存管理的创新趋势及其对未来计算技术的潜在影响。
15 2