前提概要
Java体系中的所有类,必须以【class字节码文件】必须被装载到JVM中才能运行,这个装载工作是由JVM中的类装载器完成的,类装载器所做的工作实质是把class字节码文件从存储介质(网络、硬盘、数据库等多元化方式)读取到JVM内存中,JVM在加载类的时候,都是通过ClassLoader的loadClass()方法来加载class字节码的,Java的类加载器使用双亲委派模式进行加载类。
官方给出ClassLoader功能翻译为
ClassLoader类是一个抽象类
/** * A class loader is an object that is responsible for loading classes. The * class <tt>ClassLoader</tt> is an abstract class. Given the <a * href="#name">binary name</a> of a class, a class loader should attempt to * locate or generate data that constitutes a definition for the class. A * typical strategy is to transform the name into a file name and then read a * "class file" of that name from a file system. **/ public abstract class ClassLoader 复制代码
大致意思如下(个人补充了完整信息)
- Classloader是一个负责加载classes的对象,ClassLoader类是一个抽象类,给定类的二进制名称(全限定名),尝试定位或者产生一个class的元数据信息(class静态常量池中的元数据)存放到方法区中的运行时常量池以及字符串常量池中。并且创建一个class实例对象指向该方法区内存的地址。
- 我们常用的解析方式策略就是将名称转换为物理位置及文件名,然后定位到文件系统等相关媒介中,并且读取该名称的“class类文件”。
前提概要
为了更好的理解类的加载机制,我们来深入研究一下ClassLoader和他的loadClass()方法。
ClassLoader分类
Java系统自带有三个类加载器
Bootstrap ClassLoader
最顶层的加载类,主要加载核心类库,%JRE_HOME%\lib下的rt.jar、resources.jar、charsets.jar等。
- Java命令行提供了如何扩展bootStrap级别加载class的简单方法。
- 另外需要注意的是可以通过启动JVM时指定 -Xbootclasspath 和路径来改变Bootstrap ClassLoader的加载目录。
- 语法如下:
- -Xbootclasspath:完全取代基本核心的Java class 搜索路径,不常用,否则要重新写所有Java核心class。
- -Xbootclasspath/a:被指定的文件追加到默认的bootstrap路径中。
- -Xbootclasspath/p:前缀在核心class搜索路径前面。不常用,避免引起不必要的冲突。
- -Dsun.boot.class.path=XXXX
分隔符与classpath参数类似,unix使用:号,windows使用;号,这里以unix为例
java -Xbootclasspath/a:/usrhome/thirdlib.jar: -jar yourJarExe.jar 复制代码
Extention ClassLoader(扩展的类加载器)
加载目录%JRE_HOME%\lib\ext目录下的jar包和class文件。还可以加载-D java.ext.dirs选项指定的目录。
可以采用 java.ext.dirs
这个虚拟机参数选项进行设置。
Appclass Loader(系统型类加载器)
也称为SystemAppClass加载当前应用的classpath的所有类。
ClassLoader从继承关系
为了更好的理解,我们可以查看源码。看sun.misc.Launcher,它是一个java虚拟机的入口应用。
public class Launcher { private static Launcher launcher = new Launcher(); private static String bootClassPath = System.getProperty("sun.boot.class.path"); public static Launcher getLauncher() { return launcher; } private ClassLoader loader; public Launcher() { // Create the extension class loader ClassLoader extcl; try { extcl = ExtClassLoader.getExtClassLoader(); } catch (IOException e) { throw new InternalError( "Could not create extension class loader", e); } // Now create the class loader to use to launch the application try { loader = AppClassLoader.getAppClassLoader(extcl); } catch (IOException e) { throw new InternalError( "Could not create application class loader", e); } //设置AppClassLoader为线程上下文类加载器,这个文章后面部分讲解 Thread.currentThread().setContextClassLoader(loader); } /* * Returns the class loader used to launch the main application. */ public ClassLoader getClassLoader() { return loader; } /* * The class loader used for loading installed extensions. */ static class ExtClassLoader extends URLClassLoader {} /** * The class loader used for loading from java.class.path. * runs in a restricted security context. */ static class AppClassLoader extends URLClassLoader {} 复制代码
源码有精简,我们可以得到相关的信息。
- Launcher初始化了ExtClassLoader和AppClassLoader。
- Launcher中并没有看见BootstrapClassLoader,但通过System.getProperty("sun.boot.class.path")得到了字符串bootClassPath,这个应该就是BootstrapClassLoader加载的jar包路径。
我们可以先代码测试一下sun.boot.class.path是什么内容。
System.out.println(System.getProperty("sun.boot.class.path")); 复制代码
得到的结果是:
C:\Program Files\Java\jre1.8.0_91\lib\resources.jar; C:\Program Files\Java\jre1.8.0_91\lib\rt.jar; C:\Program Files\Java\jre1.8.0_91\lib\sunrsasign.jar; C:\Program Files\Java\jre1.8.0_91\lib\jsse.jar; C:\Program Files\Java\jre1.8.0_91\lib\jce.jar; C:\Program Files\Java\jre1.8.0_91\lib\charsets.jar; C:\Program Files\Java\jre1.8.0_91\lib\jfr.jar; C:\Program Files\Java\jre1.8.0_91\classes 复制代码
可以看到,这些全是JRE目录下的jar包或者是class文件。
ExtClassLoader源码
/* * The class loader used for loading installed extensions. */ static class ExtClassLoader extends URLClassLoader { static { ClassLoader.registerAsParallelCapable(); } /** * create an ExtClassLoader. The ExtClassLoader is created * within a context that limits which files it can read */ public static ExtClassLoader getExtClassLoader() throws IOException { final File[] dirs = getExtDirs(); try { // Prior implementations of this doPrivileged() block supplied // aa synthesized ACC via a call to the private method // ExtClassLoader.getContext(). return AccessController.doPrivileged( new PrivilegedExceptionAction<ExtClassLoader>() { public ExtClassLoader run() throws IOException { int len = dirs.length; for (int i = 0; i < len; i++) { MetaIndex.registerDirectory(dirs[i]); } return new ExtClassLoader(dirs); } }); } catch (java.security.PrivilegedActionException e) { throw (IOException) e.getException(); } } private static File[] getExtDirs() { String s = System.getProperty("java.ext.dirs"); File[] dirs; if (s != null) { StringTokenizer st = new StringTokenizer(s, File.pathSeparator); int count = st.countTokens(); dirs = new File[count]; for (int i = 0; i < count; i++) { dirs[i] = new File(st.nextToken()); } } else { dirs = new File[0]; } return dirs; } ...... } 复制代码
指定-D java.ext.dirs参数来添加和改变ExtClassLoader的加载路径。这里我们通过可以编写测试代码。
System.out.println(System.getProperty("java.ext.dirs")); 复制代码
结果如下:
C:\Program Files\Java\jre1.8.0_91\lib\ext;C:\Windows\Sun\Java\lib\ext 复制代码
AppClassLoader源码
/** * The class loader used for loading from java.class.path. * runs in a restricted security context. */ static class AppClassLoader extends URLClassLoader { public static ClassLoader getAppClassLoader(final ClassLoader extcl) throws IOException{ final String s = System.getProperty("java.class.path"); final File[] path = (s == null) ? new File[0] : getClassPath(s); return AccessController.doPrivileged( new PrivilegedAction<AppClassLoader>() { public AppClassLoader run() { URL[] urls = (s == null) ? new URL[0] : pathToURLs(path); return new AppClassLoader(urls, extcl); } }); } ...... } 复制代码
可以看到AppClassLoader加载的就是 -Djava.class.path 下的路径。我们同样打印它的值。
System.out.println(System.getProperty("java.class.path")); 复制代码
结果如下:
D:\workspace\ClassLoaderDemo\bin 复制代码
这个路径其实就是当前java工程目录bin,里面存放的是编译生成的class文件。
自此我们已经知道了BootstrapClassLoader、ExtClassLoader、AppClassLoader实际是查阅相应的环境属性(-Xbootclasspath[/a/p]:)sun.boot.class.path、java.ext.dirs和java.class.path来加载资源文件的。
ClassLoader加载顺序
- 我们看到了系统的3种类加载器,但我们可能不知道具体哪个先行呢?这与我们的加载方式模型来决定的:上面说过Java使用的是双亲委托模型。
- Java的类加载器查找class和resource时,是通过“委托模式”进行的,它首先判断这个class是不是已经加载成功,如果没有的话它并不是自己进行查找,而是先通过父加载器,然后递归下去,直到Bootstrap ClassLoader。
- 如果Bootstrap ClassLoader也没有加载过此class实例,那么它就会从它指定的路径中去查找,如果查找成功则返回,如果没有查找成功则交给子类加载器,也就是ExtClassLoader,这样类似操作直到终点,也就是我上图中的红色箭头示例。这种机制就叫做双亲委托。
什么是双亲委派机制?
整个流程可以如下图所示:
- 如果当前的类加载器没有查询到这个class对象已经加载就请求父加载器(不一定是父类)进行操作,然后以此类推。
具体流程描述
- 一个AppClassLoader查找资源时,先看看缓存是否有,缓存有从缓存中获取,否则委托给父加载器。
- 递归,重复第1部的操作。
- 如果ExtClassLoader也没有加载过,则由Bootstrap ClassLoader出面,它首先查找缓存,如果没有找到的话,就去找自己的规定的路径下,也就是sun.mic.boot.class下面的路径。找到就返回,没有找到,让子加载器自己去找。
- Bootstrap ClassLoader如果没有查找成功,则ExtClassLoader自己在java.ext.dirs路径中去查找,查找成功就返回,查找不成功,再向下让子加载器找。
- ExtClassLoader查找不成功,AppClassLoader就自己查找,在java.class.path路径下查找。找到就返回。如果没有找到就让子类找,如果没有子类会怎么样?抛出各种异常。
上面的序列,详细说明了双亲委托的加载流程。我们可以发现委托是从下向上,然后具体查找过程却是自上至下。
加载类过程
首先加载类是通过Classloader中的loadClass方法加载,Classloader部分代码:
loadClass
JDK文档中是这样写的,通过指定的全限定类名加载class,它通过同名的loadClass(String,boolean)方法。
protected Class<?> loadClass(String name, boolean resolve) throws ClassNotFoundException { synchronized (getClassLoadingLock(name)) { // 首先,检测是否已经加载 Class<?> c = findLoadedClass(name); if (c == null) { long t0 = System.nanoTime(); try { if (parent != null) { //父加载器不为空则调用父加载器的loadClass c = parent.loadClass(name, false); } else { //父加载器为空则调用Bootstrap Classloader c = findBootstrapClassOrNull(name); } } catch (ClassNotFoundException e) { // ClassNotFoundException thrown if class not found // from the non-null parent class loader } if (c == null) { // If still not found, then invoke findClass in order // to find the class. long t1 = System.nanoTime(); //父加载器没有找到,则调用findclass c = findClass(name); // this is the defining class loader; record the stats sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0); sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1); sun.misc.PerfCounter.getFindClasses().increment(); } } if (resolve) { //调用resolveClass() resolveClass(c); } return c; } } // 篡改双亲委托 @Override protected Class<?> loadClass(String className, boolean resolve) throws ClassNotFoundException { Class<?> clazz = findLoadedClass(className); if (clazz == null) { clazz = findClass(className); } return clazz; } // 主要用于覆盖此方法去控制双亲委托下的加载实现 protected final Class<?> findLoadedClass(String name) { ClassLoader loader; if (this == BootClassLoader.getInstance()) loader = null; else loader = this; return VMClassLoader.findLoadedClass(loader, name); } 复制代码
上面是方法原型,一般实现这个方法的步骤是:
- 执行findLoadedClass(String)去检测这个class是不是已经加载过了,直接获取当前的类加载器(系统类加载器)。
- 执行父加载器的loadClass方法。如果父加载器为null,则jvm内置的加载器去替代,也就是Bootstrap ClassLoader。这也解释了ExtClassLoader的parent为null,但仍然说Bootstrap ClassLoader是它的父加载器。
- 如果向上委托父加载器没有加载成功,则通过findClass(String)查找。
- 如果class在上面的步骤中找到了,参数resolve又是true的话,那么loadClass()又会调用resolveClass(Class)这个方法来生成最终的Class对象。 我们可以从源代码看出这个步骤。
另外,要注意的是如果要编写一个classLoader的子类,也就是自定义一个classloader,建议覆盖findClass()方法,而不要直接改写loadClass()方法。
if (parent != null) { //父加载器不为空则调用父加载器的loadClass c = parent.loadClass(name, false); } else { //父加载器为空则调用Bootstrap Classloader c = findBootstrapClassOrNull(name); } 复制代码
- 前面说过ExtClassLoader的parent为null,所以它向上委托时,系统会为它指定Bootstrap ClassLoader。
synchronized (getClassLoadingLock(name)) 看到这行代码,我们能知道的是,这是一个同步代码块,那么synchronized的括号中放的应该是一个对象。我们来看getClassLoadingLock(name)方法的作用是什么:
protected Object getClassLoadingLock(String className) { Object lock = this; if (parallelLockMap != null) { Object newLock = new Object(); lock = parallelLockMap.putIfAbsent(className, newLock); if (lock == null) { lock = newLock; } } return lock; } 复制代码
- 以上是getClassLoadingLock(name)方法的实现细节,我们看到这里用到变量parallelLockMap ,根据这个变量的值进行不同的操作,如果这个变量是Null,那么直接返回this,如果这个属性不为Null,那么就新建一个对象,然后在调用一个putIfAbsent(className, newLock);
- 那么这个parallelLockMap变量又是哪来的那,我们发现这个变量是ClassLoader类的成员变量:
private final ConcurrentHashMap<String, Object> parallelLockMap; 复制代码
这个变量的初始化工作在ClassLoader的构造函数中:
private ClassLoader(Void unused, ClassLoader parent) { this.parent = parent; if (ParallelLoaders.isRegistered(this.getClass())) { parallelLockMap = new ConcurrentHashMap<>(); package2certs = new ConcurrentHashMap<>(); domains = Collections.synchronizedSet(new HashSet<ProtectionDomain>()); assertionLock = new Object(); } else { // no finer-grained lock; lock on the classloader instance parallelLockMap = null; package2certs = new Hashtable<>(); domains = new HashSet<>(); assertionLock = this; } } 复制代码
这里我们可以看到构造函数根据一个属性ParallelLoaders的Registered状态的不同来给parallelLockMap 赋值。
在ClassLoader类中包含一个静态内部类private static class ParallelLoaders,在ClassLoader被加载的时候这个静态内部类就被初始化。这个静态内部类的代码我就不贴了,直接告诉大家什么意思,sun公司是这么说的:Encapsulates the set of parallel capable loader types,意识就是说:封装了并行的可装载的类型的集合。
上面这个说的是不是有点乱,那让我们来整理一下:
- 首先,在ClassLoader类中有一个静态内部类ParallelLoaders,他会指定的类的并行能力,如果当前的加载器被定位为具有并行能力,那么他就给parallelLockMap定义,就是new一个 ConcurrentHashMap<>(),那么这个时候,我们知道如果当前的加载器是具有并行能力的,那么parallelLockMap就不是Null,这个时候,我们判断parallelLockMap是不是Null,如果他是null,说明该加载器没有注册并行能力,那么我们没有必要给他一个加锁的对象,getClassLoadingLock方法直接返回this,就是当前的加载器的一个实例。
- 如果这个parallelLockMap不是null,那就说明该加载器是有并行能力的,那么就可能有并行情况,那就需要返回一个锁对象。然后就是创建一个新的Object对象,调用parallelLockMap的putIfAbsent(className, newLock)方法,这个方法的作用是:
- 根据传进来的className,检查该名字是否已经关联了一个value值,如果已经关联过value值,那么直接把他关联的值返回,如果没有关联过值的话,那就把我们传进来的Object对象作为value值,className作为Key值组成一个map返回。
- 无论putIfAbsent方法的返回值是什么,都把它赋值给我们刚刚生成的那个Object对象。 这个时候,我们来简单说明一下getClassLoadingLock(String className)的作用,就是: 为类的加载操作返回一个锁对象。
- 为了向后兼容,这个方法这样实现:如果当前的classloader对象注册了并行能力,方法返回一个与指定的名字className相关联的特定对象,否则,直接返回当前的ClassLoader对象。
双亲委派机制的作用
- 避免重复加载,当父类加载器已经加载了该类的时候,就没有必要子类加载器再加载一次了。
- 首先,类加载器是按照级别层层往下加载的,当下层的加载器去加载某一个类时,有可能上层的加载已经加载过的,比如FrameWork层的加载被BootClassLoader加载过,下层不用再去加载了。
- 安全性考虑,防止核心API库被随意篡改。
- 系统类加载器已经加载过了FrameWork层了类,如果我们自己再写一个系统级别的类,创建包java.lang,创建一个自己的String类,类加载器去加载这个类覆盖了原本的java.lang下的String,那么这个时候使用String整个应用就出问题了。
package java.lang; class String { @NonNull @Override public String toString() { return ""; } @Override public boolean equals(@Nullable Object obj) { return false; } } 复制代码
而因为双亲委派机制,加载这个String类之前,调用parent的BootClassloader,判断已经加载过String类,这个类其实不会再去找了,解决了被篡改的问题。
类加载的动态性体现
一个应用程序总是由n多个类组成,Java程序启动时,并不是一次把所有的类全部加载后再运行,它总是先把保证程序运行的基础类一次性加载到jvm中,其它类等到jvm用到的时候再加载,这样的好处是节省了内存的开销,因为java最早就是为嵌入式系统而设计的,内存宝贵,这是一种可以理解的机制,而用到时再加载这也是java动态性的一种体现。
类的加载过程
- 装载:通过“类全路径名”查找并加载类的二进制数据,并且生成class实例对象指向对应的方法区的内存数据结构。
- 链接:把类的二进制数据合并到JVM中(主要作为校验阶段中的class文件格式校验阶段完成存入方法区内存中)。
- 验证:确保被加载类的正确性,确保加载内容不危害虚拟机;
- 准备:为类的静态变量分配内存,并将其初始化为默认值,常量直接赋值;
- 解析:把类中的符号引用转换为直接引用;
- 初始化:直接进行先关的静态类构造器,实现相关的相关的类属性和类代码块的执行和赋值操作。