基于启发式蝙蝠算法、粒子群算法、花轮询算法和布谷鸟搜索算法的换热器PI控制器优化(Matlab代码实现)

简介: 基于启发式蝙蝠算法、粒子群算法、花轮询算法和布谷鸟搜索算法的换热器PI控制器优化(Matlab代码实现)

👨‍🎓个人主页:研学社的博客

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码及文章讲解


image.gif

💥1 概述

本文采用蝙蝠算法、粒子群优化、花轮询算法和布谷鸟搜索算法,对管壳式换热器的控制系统进行了建模和计算机仿真。为了评估不同调整方法的性能,本文比较了生成的八个网格设置中的阶跃响应瞬态值。它还使用文献中提出的性能指标对这两种类型的网格进行了比较,通过蝙蝠算法优化的系统获得了与粒子群优化、布谷鸟搜索算法和花朵轮询算法相关的最佳瞬时值。性能指标FPA和PSO获得了较好的结果。

📚2 运行结果

image.gif

image.gif

image.gifimage.gif

部分代码:

% Draw n Levy flight sample

function L = Levy(d)

% Levy exponent and coefficient

% For details, see Chapter 11 of the following book:

% Xin-She Yang, Nature-Inspired Optimization Algorithms, Elsevier, (2014).

beta=3/2;

sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);

   u=randn(1,d)*sigma;

   v=randn(1,d);

   step=u./abs(v).^(1/beta);

L=0.01*step;

end

%% --------------- All subfunctions are list below ------------------

%% Get cuckoos by ramdom walk

function nest=get_cuckoos(nest,best,Lb,Ub)

% Levy flights

n=size(nest,1);

% Levy exponent and coefficient

% For details, see equation (2.21), Page 16 (chapter 2) of the book

% X. S. Yang, Nature-Inspired Metaheuristic Algorithms, 2nd Edition, Luniver Press, (2010).

beta=3/2;

sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);

for j=1:n,

   s=nest(j,:);

   % This is a simple way of implementing Levy flights

   % For standard random walks, use step=1;

   %% Levy flights by Mantegna's algorithm

   u=randn(size(s))*sigma;

   v=randn(size(s));

   step=u./abs(v).^(1/beta);

 

   % In the next equation, the difference factor (s-best) means that

   % when the solution is the best solution, it remains unchanged.    

   stepsize=0.01*step.*(s-best);

   % Here the factor 0.01 comes from the fact that L/100 should the typical

   % step size of walks/flights where L is the typical lenghtscale;

   % otherwise, Levy flights may become too aggresive/efficient,

   % which makes new solutions (even) jump out side of the design domain

   % (and thus wasting evaluations).

   % Now the actual random walks or flights

   s=s+stepsize.*randn(size(s));

  % Apply simple bounds/limits

  nest(j,:)=simplebounds(s,Lb,Ub);

end

end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

image.gif

🌈4 Matlab代码及文章讲解

链接:https://pan.baidu.com/s/1PWA9hFsoxthlIpSDttH-Gg
提取码:4jq2
--来自百度网盘超级会员V3的分享

相关文章
|
6天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
30 3
|
6天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
22 2
|
20天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
18天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
21天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
18天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
19天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
|
18天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
24天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
4天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。