Java多线程进阶——CAS与synchronized优化

简介: Java多线程进阶——CAS与synchronized优化

1.CAS


1.1 CAS是什么?


CAS: 全称Compare and swap,字面意思:“比较并交换”


寄存器A的值和内存M的值进行比较,如果不相同,则无事发生;如果相同,则把寄存器B的值和M的值进行交换(不关心之后B的值,更关心交换之后M的值,此处的交换相当于是把B赋值给M了)


看起来这么多的操作,既有比较又有交换,但实际上是由CPU的一条指令原子的完成的,是线程安全的,效率很高。


1.2 CAS的应用场景


1.2.1 实现原子类


我们在之前讲到的count++操作(【Java多线程基础4.1】),在多线程的环境下,是线程不安全的,如果4.1想要安全,就需要加锁,性能将会降低。


Java标准库所提供的基于“CAS”实现的标准类,可以原子的实现++的操作,从而能够使线程既安全,又高效。


如标准库中封装好的AtomicInteger 类其中的 getAndIncrement ()相当于 count++ 操作.


伪代码实现:


微信图片_20230111142110.png

执行成功了(比较相同),就完成了自增;如果执行不成功(比较不同),就会重新LOAD&&CAS。


代码示例:利用原子类实现count变量的十万次自增


public class Demo {
    public static void main(String[] args) throws InterruptedException {
        AtomicInteger count=new AtomicInteger(0);
        Thread t1=new Thread(()-> {
            for (int i = 0; i < 50000; i++) {
                count.getAndIncrement();
            }
        });
        Thread t2=new Thread(()-> {
            for (int i = 0; i < 50000; i++) {
                count.getAndIncrement();
            }
        });
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        //get获取到内部的值
        System.out.println(count.get());
    }
}
//100000


运行结果为100000,说明是线程安全的。


1.2.2 实现自旋锁


自旋锁是纯用户态的轻量级锁,当发现锁被其他线程持有的时候,线程不会挂起等待,而是会反复询问,查询当前的锁是否释放了。(

这种实现消耗CPU资源,但是换来的是第一时间获取到锁,如果当前预期锁竞争不太激烈的时候,使用自旋锁非常合适)


伪代码实现:


微信图片_20230111142107.png

1.3 CAS的ABA问题


虽然CAS实现了原子操作,但还是存在一定的问题:

在CAS中进行比较的时候,发现寄存器A和内存M的值相同,并没办法判定M是始终没变,还是M变了又变回来了。


假设有一天我们去取钱,银行卡上有500元的存款,我们想取出200元,结果取钱的时候卡了一下,我们连按了两次取钱,ATM就创建出来了2个线程来进行扣款操作,并且扣款操作是基于CAS来完成的。


微信图片_20230111142104.png

为了解决上述的问题,需要有一块内存,来保存M的“修改次数【只增不减】”或者是“上次修改时间【只增不减】”,这样在CAS的比较操作中,比较的不是账户余额,而是比较版本号/上次修改时间。


2.synchronized的优化


2.1 锁膨胀/升级


synchronized实际上是自适应锁,它根据实际情况来进行加锁操作,这种自适应也是基于锁膨胀/锁升级这样的手段来实现的。


锁升级过程:


  • 当没有线程加锁的时候,是无锁状态
  • 当首个线程(无竞争)进行加锁的时候,进入偏向锁状态,偏向锁并不是真的锁,只是设置了一个状态,当有竞争时才会真加锁
  • 当其他线程竞争锁时,导致产生了锁竞争,进入轻量级锁状态
  • 如果竞争进一步加剧,进入重量级锁状态


微信图片_20230111142100.png

2.2 锁消除


是编译器的一种优化行为,如果一个地方不必加锁,你写了synchronized,就会自动的把锁给去掉(比如你只有一个线程,或者时多线程线程不涉及修改同一个变量,如果代码中也写了synchronized,此时的加锁操作,就会直接被JVM给优化掉)


2.3 锁粗化


锁粗化就是将synchronized加锁范围的代码块加大,范围越大(代码越多),锁的粒度越大;反之锁的粒度越细。


相关文章
|
21天前
|
监控 算法 Java
Java虚拟机(JVM)垃圾回收机制深度剖析与优化策略####
本文作为一篇技术性文章,深入探讨了Java虚拟机(JVM)中垃圾回收的工作原理,详细分析了标记-清除、复制算法、标记-压缩及分代收集等主流垃圾回收算法的特点和适用场景。通过实际案例,展示了不同GC(Garbage Collector)算法在应用中的表现差异,并针对大型应用提出了一系列优化策略,包括选择合适的GC算法、调整堆内存大小、并行与并发GC调优等,旨在帮助开发者更好地理解和优化Java应用的性能。 ####
26 0
|
21天前
|
存储 监控 小程序
Java中的线程池优化实践####
本文深入探讨了Java中线程池的工作原理,分析了常见的线程池类型及其适用场景,并通过实际案例展示了如何根据应用需求进行线程池的优化配置。文章首先介绍了线程池的基本概念和核心参数,随后详细阐述了几种常见的线程池实现(如FixedThreadPool、CachedThreadPool、ScheduledThreadPool等)的特点及使用场景。接着,通过一个电商系统订单处理的实际案例,分析了线程池参数设置不当导致的性能问题,并提出了相应的优化策略。最终,总结了线程池优化的最佳实践,旨在帮助开发者更好地利用Java线程池提升应用性能和稳定性。 ####
|
13天前
|
存储 Java
Java 11 的String是如何优化存储的?
本文介绍了Java中字符串存储优化的原理和实现。通过判断字符串是否全为拉丁字符,使用`byte`代替`char`存储,以节省空间。具体实现涉及`compress`和`toBytes`方法,前者用于尝试压缩字符串,后者则按常规方式存储。代码示例展示了如何根据配置决定使用哪种存储方式。
|
22天前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
48 5
|
20天前
|
存储 监控 算法
Java虚拟机(JVM)垃圾回收机制深度解析与优化策略####
本文旨在深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法及参数调优方法。通过剖析垃圾回收的生命周期、内存区域划分以及GC日志分析,为开发者提供一套实用的JVM垃圾回收优化指南,助力提升Java应用的性能与稳定性。 ####
|
7月前
|
安全 Java
深入理解Java并发编程:线程安全与性能优化
【2月更文挑战第22天】在Java并发编程中,线程安全和性能优化是两个重要的主题。本文将深入探讨这两个主题,包括线程安全的基本概念,如何实现线程安全,以及如何在保证线程安全的同时进行性能优化。
64 0
|
7月前
|
存储 安全 Java
深入理解Java并发编程:线程安全与锁机制
【5月更文挑战第31天】在Java并发编程中,线程安全和锁机制是两个核心概念。本文将深入探讨这两个概念,包括它们的定义、实现方式以及在实际开发中的应用。通过对线程安全和锁机制的深入理解,可以帮助我们更好地解决并发编程中的问题,提高程序的性能和稳定性。
|
4月前
|
存储 安全 Java
解锁Java并发编程奥秘:深入剖析Synchronized关键字的同步机制与实现原理,让多线程安全如磐石般稳固!
【8月更文挑战第4天】Java并发编程中,Synchronized关键字是确保多线程环境下数据一致性与线程安全的基础机制。它可通过修饰实例方法、静态方法或代码块来控制对共享资源的独占访问。Synchronized基于Java对象头中的监视器锁实现,通过MonitorEnter/MonitorExit指令管理锁的获取与释放。示例展示了如何使用Synchronized修饰方法以实现线程间的同步,避免数据竞争。掌握其原理对编写高效安全的多线程程序极为关键。
71 1
|
5月前
|
安全 Java 开发者
Java并发编程中的线程安全问题及解决方案探讨
在Java编程中,特别是在并发编程领域,线程安全问题是开发过程中常见且关键的挑战。本文将深入探讨Java中的线程安全性,分析常见的线程安全问题,并介绍相应的解决方案,帮助开发者更好地理解和应对并发环境下的挑战。【7月更文挑战第3天】
109 0
|
6月前
|
安全 Java 开发者
Java并发编程中的线程安全策略
在现代软件开发中,Java语言的并发编程特性使得多线程应用成为可能。然而,随着线程数量的增加,如何确保数据的一致性和系统的稳定性成为开发者面临的挑战。本文将探讨Java并发编程中实现线程安全的几种策略,包括同步机制、volatile关键字的使用、以及java.util.concurrent包提供的工具类,旨在为Java开发者提供一系列实用的方法来应对并发问题。
52 0