1.算法描述
部分传输序列(Partial Transmit Sequence , PTS)由于其不受载波数量限制,并且能够有效的,无失真的降低OFDM信号峰均比,而受到广泛关注。部分传输序列算法(PTS)最初是由S.H.Muller和J.B.Huber于1997年提出。PTS算法的核心思想是将具有N个符号的输入序列按照一定的分割方式分割成V个子数据块,并且保持每个子数据块仍含有N个符号。然后对V个子数据块进行相位加权与合并处理,选择具有最小PAPR的一组符号进行传输,达到降低OFDM信号PAPR的目的。传统的PTS算法理论比较多,现成的资料也比较多,这里就不多做介绍了,通过仿真,对比PTS和没有PTS下。目前OFDM的PAPR主要算法有信号预畸变,信号扰码,编码三个方向来解决。
在本课题中,我们将在传统PTS算法基础上引入了TR的思路到改进后的PTS算法中,引入的意义为:先预留出若干子载波来加载削峰信号,然后利用优化过的PTS算法对OFDM符号的PAPR进行抑制,之后再利用改进的TR算法对符号的PAPR进行进一步的抑制。整个算法的流程如下所示:
步骤一:加入门限,降低PTS算法的复杂度(但是这样会降低性能)
当满足要求:
算法就停止搜索,这样的话,就降低的算法的复杂度,但是会影响性能。
步骤二:加入限幅的方法
通过这个方法,可以在步骤一的基础上,提高性能,使其在复杂度降低的前提下,保存系统的性能不变。
步骤三:改进PTS和TR的结合
为了和TR结合,首先,PTS分组必须为随机分组,并随机的保留一定的预留子载波,然后先执行PTS,再执行TR。
步骤四:执行TR
将得到的频域信号X进行IFFT变换得到时域信号x,对x的每个子载波上的数据限幅,对取反后的限幅差值进行N点FFT变换,得到的频域反向限幅差值信号的预留子载波上的数据即为削峰数据,用其替代X中预留子载波上的数据即可有效地消除峰值信号。
2.仿真效果预览
matlab2022a仿真结果如下:
3.MATLAB部分代码预览
if mod(k,1000) == 0
k/1000
end
%产生数据源
QPSK_Ind = floor(length(Map_qpsk)*rand(1,Nfft))+1;
%调制,这里为了研究PAPR性能,所以不加入编码模块和交织模块
Qpsk_mod = Map_qpsk(QPSK_Ind(1,:));
%随机分割
tic;
QPSK_Ind = randperm(Nfft);
A = zeros(1,Nfft);
for v=1:Npts
A(v,QPSK_Ind(v:Npts:Nfft)) = Qpsk_mod(QPSK_Ind(v:Npts:Nfft));
end
a = ifft(A,[],2);
%限幅
[rr,cc] = size(a);
for i = 1:rr
for j = 1:cc
if abs(a(i,j)) > Tho
a(i,j) = Tho*(real(a(i,j)) + ij*imag(a(i,j)))/abs(a(i,j));
end
end
end
for n = 1:4^Npts
%相位组合因子
phase_temp = Init_Phase(Data_back(n,:)).';
if n == 1
a_temp = sum(a.*repmat(phase_temp,1,Nfft));
else
a_temp = a_temp + sum(a.*repmat(phase_temp,1,Nfft));
end
Signal_Power_temp = abs(a_temp.^2);
Peak_Power_temp = max(Signal_Power_temp,[],2);
Mean_Power_temp = mean(Signal_Power_temp,2);
PAPR_temp = 10*log10(Peak_Power_temp./Mean_Power_temp);
if PAPR_temp < Th
PAPR_pts(k) = PAPR_temp;
X2 = a_temp;
break;
end
end
%限幅
[rr,cc] = size(X2);
X2s = X2;
for i = 1:rr
for j = 1:cc
if abs(X2(i,j)) > Tho2
X2s(i,j) = Tho2*(real(X2(i,j)) + ij*imag(X2(i,j)))/abs(X2(i,j));
end
end
end
X3 = X2s;
Signal_Power_temp = abs(X3.^2);
Peak_Power_temp = max(Signal_Power_temp,[],2);
Mean_Power_temp = mean(Signal_Power_temp,2);
PAPRs(k) = 10*log10(Peak_Power_temp./Mean_Power_temp);
times(k) = toc;
end
[cdf,PAPR] = ecdf(PAPRs);
figure;
semilogy(PAPR,1-cdf,'b','LineWidth',3);
xlabel('PAPR0[dB]');
ylabel('CCDF (Pr[PAPR>PAPR0])');
grid on;
title('有PAPR的时候的系统CCDF图');
save PAPR_Data_with_PAPR.mat PAPR cdf
%下面的代码是计算误码率的代码
Error = zeros(1,length(SNR));
Rec = zeros(1,Nfft);
PAPR_pts = zeros(1,min(Nframes,2000));
for ii = 1:length(SNR)
Err_tmp = 0;
for k=1:min(Nframes,2000)
% RandStream.setDefaultStream(RandStream('mt19937ar','seed',k*ii));
if mod(k,1000) == 0
ii
k/1000
end
%产生数据源
QPSK_Dat = floor(length(Map_qpsk)*rand(1,Nfft)) + 1;
%调制,这里为了研究PAPR性能,所以不加入编码模块和交织模块
Qpsk_mod = Map_qpsk(QPSK_Dat);
%进行IFFT变换
%随机分割
QPSK_Ind = randperm(Nfft);
A = zeros(1,Nfft);
for v=1:Npts
A(v,QPSK_Ind(v:Npts:Nfft)) = Qpsk_mod(QPSK_Ind(v:Npts:Nfft));
end
a = ifft(A,[],2);
%限幅
[rr,cc] = size(a);
for i = 1:rr
for j = 1:cc
if abs(a(i,j)) > Tho
a(i,j) = Tho*(real(a(i,j)) + ij*imag(a(i,j)))/abs(a(i,j));
end
end
end
for n = 1:4^Npts
%相位组合因子
phase_temp = Init_Phase(Data_back(n,:)).';
if n == 1
a_temp = sum(a.*repmat(phase_temp,1,Nfft));
else
a_temp = a_temp + sum(a.*repmat(phase_temp,1,Nfft));
end
Signal_Power_temp = abs(a_temp.^2);
Peak_Power_temp = max(Signal_Power_temp,[],2);
Mean_Power_temp = mean(Signal_Power_temp,2);
PAPR_temp = 10*log10(Peak_Power_temp./Mean_Power_temp);
if PAPR_temp < Th
PAPR_pts(k) = PAPR_temp;
X2 = a_temp;
break;
end
end
%限幅
[rr,cc] = size(X2);
X2s = X2;
for i = 1:rr
for j = 1:cc
if abs(X2(i,j)) > Tho2
X2s(i,j) = Tho2*(real(X2(i,j)) + ij*imag(X2(i,j)))/abs(X2(i,j));
end
end
end
X3 = X2s;
R = X3;
%通过高斯信道
Dat_Ifft = awgn(R,SNR(ii),'measured');
%模拟实际的接收端的畸变
Dat_Ifft2 = Dat_Ifft;
if PAPR_pts(k) > 8+Tho+Tho2%瞬时功率过大,则畸变
Dat_Ifft2 = randn(1,Nfft) + ij*randn(1,Nfft);
end
%fft变换
Dat_fft = fft(Dat_Ifft2,[],2);
%解调
I = sign(real(Dat_fft)).*(abs(real(Dat_fft))>0.5);
Q = sign(imag(Dat_fft)).*(abs(imag(Dat_fft))>0.5);
for i = 1:Nfft
if I(i) == 1 & Q(i) == 0
Rec(i) = 1;
end
if I(i) == -1 & Q(i) == 0
Rec(i) = 2;
end
if I(i) == 0 & Q(i) == 1
Rec(i) = 3;
end
if I(i) == 0 & Q(i) == -1
Rec(i) = 4;
end
end
Err_tmp = Err_tmp + length(find(QPSK_Dat~=Rec));
end
Error(ii) = Err_tmp/min(Nframes,2000)/Nfft;
end
01_060_m