m基于PTS+TR的OFDM系统PAPR联合抑制算法matlab仿真

本文涉及的产品
转发路由器TR,750小时连接 100GB跨地域
简介: m基于PTS+TR的OFDM系统PAPR联合抑制算法matlab仿真

1.算法描述

   部分传输序列(Partial Transmit Sequence , PTS)由于其不受载波数量限制,并且能够有效的,无失真的降低OFDM信号峰均比,而受到广泛关注。部分传输序列算法(PTS)最初是由S.H.Muller和J.B.Huber于1997年提出。PTS算法的核心思想是将具有N个符号的输入序列按照一定的分割方式分割成V个子数据块,并且保持每个子数据块仍含有N个符号。然后对V个子数据块进行相位加权与合并处理,选择具有最小PAPR的一组符号进行传输,达到降低OFDM信号PAPR的目的。传统的PTS算法理论比较多,现成的资料也比较多,这里就不多做介绍了,通过仿真,对比PTS和没有PTS下。目前OFDM的PAPR主要算法有信号预畸变,信号扰码,编码三个方向来解决。

   在本课题中,我们将在传统PTS算法基础上引入了TR的思路到改进后的PTS算法中,引入的意义为:先预留出若干子载波来加载削峰信号,然后利用优化过的PTS算法对OFDM符号的PAPR进行抑制,之后再利用改进的TR算法对符号的PAPR进行进一步的抑制。整个算法的流程如下所示:

步骤一:加入门限,降低PTS算法的复杂度(但是这样会降低性能)

当满足要求:
1.png

算法就停止搜索,这样的话,就降低的算法的复杂度,但是会影响性能。

步骤二:加入限幅的方法

2.png

   通过这个方法,可以在步骤一的基础上,提高性能,使其在复杂度降低的前提下,保存系统的性能不变。 

步骤三:改进PTS和TR的结合

为了和TR结合,首先,PTS分组必须为随机分组,并随机的保留一定的预留子载波,然后先执行PTS,再执行TR。

步骤四:执行TR

   将得到的频域信号X进行IFFT变换得到时域信号x,对x的每个子载波上的数据限幅,对取反后的限幅差值进行N点FFT变换,得到的频域反向限幅差值信号的预留子载波上的数据即为削峰数据,用其替代X中预留子载波上的数据即可有效地消除峰值信号。

2.仿真效果预览
matlab2022a仿真结果如下:

3.png
4.png
5.png

3.MATLAB部分代码预览

    if mod(k,1000) == 0
       k/1000
    end  
    %产生数据源
    QPSK_Ind       = floor(length(Map_qpsk)*rand(1,Nfft))+1;
    %调制,这里为了研究PAPR性能,所以不加入编码模块和交织模块
    Qpsk_mod       = Map_qpsk(QPSK_Ind(1,:));            
    %随机分割
    tic;
    QPSK_Ind = randperm(Nfft);
    A        = zeros(1,Nfft);
    for v=1:Npts
        A(v,QPSK_Ind(v:Npts:Nfft)) = Qpsk_mod(QPSK_Ind(v:Npts:Nfft));
    end
    a       = ifft(A,[],2);
    %限幅
    [rr,cc] = size(a);
    for i = 1:rr
        for j = 1:cc
            if abs(a(i,j)) > Tho
               a(i,j) = Tho*(real(a(i,j)) + ij*imag(a(i,j)))/abs(a(i,j));
            end
        end
    end
    
    for n = 1:4^Npts
        %相位组合因子
        phase_temp        = Init_Phase(Data_back(n,:)).';
        if n == 1
           a_temp         = sum(a.*repmat(phase_temp,1,Nfft)); 
        else  
           a_temp         = a_temp + sum(a.*repmat(phase_temp,1,Nfft)); 
        end
        Signal_Power_temp = abs(a_temp.^2);
        Peak_Power_temp   = max(Signal_Power_temp,[],2);
        Mean_Power_temp   = mean(Signal_Power_temp,2);
        PAPR_temp         = 10*log10(Peak_Power_temp./Mean_Power_temp);
        if PAPR_temp < Th
           PAPR_pts(k) = PAPR_temp;
           X2          = a_temp;    
           break;
        end
    end
    %限幅
    [rr,cc] = size(X2);
    X2s     = X2;
    for i = 1:rr
        for j = 1:cc
            if abs(X2(i,j)) > Tho2
               X2s(i,j) = Tho2*(real(X2(i,j)) + ij*imag(X2(i,j)))/abs(X2(i,j));
            end
        end
    end
    X3 = X2s;
    
    Signal_Power_temp = abs(X3.^2);
    Peak_Power_temp   = max(Signal_Power_temp,[],2);
    Mean_Power_temp   = mean(Signal_Power_temp,2);
    PAPRs(k)          = 10*log10(Peak_Power_temp./Mean_Power_temp); 
    times(k) = toc;
end
[cdf,PAPR] = ecdf(PAPRs);
figure;
semilogy(PAPR,1-cdf,'b','LineWidth',3);
xlabel('PAPR0[dB]');
ylabel('CCDF (Pr[PAPR>PAPR0])');
grid on;
title('有PAPR的时候的系统CCDF图');
save PAPR_Data_with_PAPR.mat PAPR cdf
%下面的代码是计算误码率的代码
Error    = zeros(1,length(SNR));
Rec      = zeros(1,Nfft); 
PAPR_pts = zeros(1,min(Nframes,2000));
for ii = 1:length(SNR)
    Err_tmp = 0;
    for k=1:min(Nframes,2000)
%         RandStream.setDefaultStream(RandStream('mt19937ar','seed',k*ii));
        if mod(k,1000) == 0
           ii 
           k/1000
        end
        %产生数据源
        QPSK_Dat     = floor(length(Map_qpsk)*rand(1,Nfft)) + 1;
        %调制,这里为了研究PAPR性能,所以不加入编码模块和交织模块
        Qpsk_mod     = Map_qpsk(QPSK_Dat);   
        
        %进行IFFT变换
        %随机分割
        QPSK_Ind = randperm(Nfft);
        A        = zeros(1,Nfft);
        for v=1:Npts
            A(v,QPSK_Ind(v:Npts:Nfft)) = Qpsk_mod(QPSK_Ind(v:Npts:Nfft));
        end
        a           = ifft(A,[],2);   
        %限幅
        [rr,cc] = size(a);
        for i = 1:rr
            for j = 1:cc
                if abs(a(i,j)) > Tho
                   a(i,j) = Tho*(real(a(i,j)) + ij*imag(a(i,j)))/abs(a(i,j));
                end
            end
        end
        
        for n = 1:4^Npts
            %相位组合因子
            phase_temp        = Init_Phase(Data_back(n,:)).';
            if n == 1
               a_temp         = sum(a.*repmat(phase_temp,1,Nfft)); 
            else  
               a_temp         = a_temp + sum(a.*repmat(phase_temp,1,Nfft)); 
            end
            Signal_Power_temp = abs(a_temp.^2);
            Peak_Power_temp   = max(Signal_Power_temp,[],2);
            Mean_Power_temp   = mean(Signal_Power_temp,2);
            PAPR_temp         = 10*log10(Peak_Power_temp./Mean_Power_temp);
            if PAPR_temp < Th
               PAPR_pts(k)    = PAPR_temp;
               X2             = a_temp;    
               break;
            end
        end
        %限幅
        [rr,cc] = size(X2);
        X2s     = X2;
        for i = 1:rr
            for j = 1:cc
                if abs(X2(i,j)) > Tho2
                   X2s(i,j) = Tho2*(real(X2(i,j)) + ij*imag(X2(i,j)))/abs(X2(i,j));
                end
            end
        end
        X3 = X2s;
 
        R = X3;
        %通过高斯信道
        Dat_Ifft     = awgn(R,SNR(ii),'measured');
        %模拟实际的接收端的畸变
        Dat_Ifft2    = Dat_Ifft;
        if PAPR_pts(k) > 8+Tho+Tho2%瞬时功率过大,则畸变
           Dat_Ifft2 = randn(1,Nfft) + ij*randn(1,Nfft); 
        end
        
        %fft变换
        Dat_fft      = fft(Dat_Ifft2,[],2); 
        %解调
        I            = sign(real(Dat_fft)).*(abs(real(Dat_fft))>0.5);
        Q            = sign(imag(Dat_fft)).*(abs(imag(Dat_fft))>0.5);
        for i = 1:Nfft
            if I(i) ==  1 & Q(i) ==  0
               Rec(i) = 1; 
            end
            if I(i) == -1 & Q(i) ==  0
               Rec(i) = 2;
            end
            if I(i) == 0  & Q(i) ==  1
               Rec(i) = 3;
            end
            if I(i) == 0  & Q(i) == -1
               Rec(i) = 4;
            end            
        end
    Err_tmp = Err_tmp + length(find(QPSK_Dat~=Rec));    
    end
    Error(ii) = Err_tmp/min(Nframes,2000)/Nfft;
end
01_060_m
相关文章
|
13天前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
13天前
|
算法 机器人 数据安全/隐私保护
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
|
13天前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
5天前
|
机器学习/深度学习 算法 Python
matlab思维进化算法优化BP神经网络
matlab思维进化算法优化BP神经网络
|
1月前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
|
1月前
|
算法 安全 数据安全/隐私保护
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
|
2月前
|
算法 数据可视化 BI
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
1月前
|
算法 定位技术 数据安全/隐私保护
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
125 12
|
1月前
|
算法 数据安全/隐私保护
基于GA遗传算法的斜拉桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现斜拉桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率ηq(0.95≤ηq≤1.05)的要求,目标是使ηq尽量接近1,同时减少加载车辆数量和布载耗时。程序通过迭代优化计算车辆位置、方向、类型及占用车道等参数,并展示适应度值收敛过程。测试版本为MATLAB2022A,包含核心代码与运行结果展示。优化模型综合考虑车辆总重量、间距及桥梁允许载荷密度等约束条件,确保布载方案科学合理。

热门文章

最新文章