pytorch-天气识别

简介: pytorch-天气识别

一、前期准备

1.设置GPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms,datasets
import matplotlib.pyplot as plt
import os,PIL,pathlib
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

device(type='cuda')

2.导入数据

data_dir = './weather_photos/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classNames = [str(path).split('\\')[1] for path in data_paths]
classNames

['cloudy', 'rain', 'shine', 'sunrise']

train_transforms = transforms.Compose([
    transforms.Resize([224,224]),# resize输入图片
    transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换成tensor
    transforms.Normalize(
        mean = [0.485, 0.456, 0.406],
        std = [0.229,0.224,0.225]) # 从数据集中随机抽样计算得到
])
total_data = datasets.ImageFolder(data_dir,transform=train_transforms)
total_data
Dataset ImageFolder
    Number of datapoints: 1125
    Root location: weather_photos
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=PIL.Image.BILINEAR)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )

3.数据集划分

train_size = int(0.8*len(total_data))
test_size = len(total_data) - train_size
train_size,test_size

(900, 225)


train_dataset, test_dataset = torch.utils.data.random_split(total_data,[train_size,test_size])
train_dataset,test_dataset

(<torch.utils.data.dataset.Subset at 0x246934b8df0>,

<torch.utils.data.dataset.Subset at 0x246934b82b0>)

batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
for X,y in test_dl:
    print('Shape of X [N, C, H, W]:', X.shape)
    print('Shape of y:', y.shape)
    break

Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224])

Shape of y: torch.Size([32])

二、构建简单的CNN网络

import torch.nn.functional as F
num_classes = 4  # 图片的类别数
class Network_bn(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0) 
        self.bn1 = nn.BatchNorm2d(12)                
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0) 
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2,2)
        self.conv3 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn3 = nn.BatchNorm2d(24) 
        self.conv4 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)  
        # 分类网络
        self.fc1 = nn.Linear(24*50*50,num_classes)
     # 前向传播
     def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.pool(x)
        x = F.relu(self.bn3(self.conv3(x)))
        x = F.relu(self.bn4(self.conv4(x)))
        x = self.pool(x)
        x = x.view(-1,24*50*50)
        x = self.fc1(x)
        return x
model = Network_bn().to(device)
model
Network_bn(
  (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv3): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv4): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (fc1): Linear(in_features=60000, out_features=4, bias=True)
)

三、训练模型

1.设置超参数

loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
opt
SGD (
Parameter Group 0
    dampening: 0
    lr: 0.0001
    momentum: 0
    nesterov: False
    weight_decay: 0
)

2.编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共900张图片
    num_batches = len(dataloader)   # 批次数目,29(900/32)
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
    train_acc  /= size
    train_loss /= num_batches
    return train_acc, train_loss

3.编写测试函数

与测试函数和训练函数大致相同,由于不需要进行梯度下降更新权重,所以不需要传入优化器。

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,8(255/32=8,向上取整)
    test_loss, test_acc = 0, 0
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
    test_acc  /= size
    test_loss /= num_batches
    return test_acc, test_loss

4、正式训练

epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []
for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

Epoch: 1, Train_acc:61.3%, Train_loss:0.975, Test_acc:60.9%,Test_loss:0.961

...

Epoch:18, Train_acc:94.4%, Train_loss:0.255, Test_acc:87.6%,Test_loss:0.315

Epoch:19, Train_acc:93.8%, Train_loss:0.231, Test_acc:92.4%,Test_loss:0.226

Epoch:20, Train_acc:94.9%, Train_loss:0.187, Test_acc:92.0%,Test_loss:0.315

Done

四、结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

相关文章
|
5月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】
|
6月前
|
机器学习/深度学习 搜索推荐 数据可视化
PyTorch搭建基于图神经网络(GCN)的天气推荐系统(附源码和数据集)
PyTorch搭建基于图神经网络(GCN)的天气推荐系统(附源码和数据集)
186 0
|
机器学习/深度学习 PyTorch 算法框架/工具
从零开始学Pytorch(十九)之Kaggle上的狗品种识别
从零开始学Pytorch(十九)之Kaggle上的狗品种识别
|
机器学习/深度学习 存储 数据采集
用Pytorch构建一个喵咪识别模型
用Pytorch构建一个喵咪识别模型
87 0
|
数据采集 机器学习/深度学习 JSON
【Pytorch神经网络实战案例】32 使用Transformers库的管道方式实现:加载指定模型+文本分类+掩码语言建模+摘要生成+特征提取+阅读理解+实体词识别
在Transformers库中pipeline类的源码文件pipelines.py里,可以找到管道方式自动下载的预编译模型地址。可以根据这些地址,使用第三方下载工具将其下载到本地。
841 0
|
机器学习/深度学习 PyTorch 算法框架/工具
【Pytorch神经网络实战案例】29 【代码汇总】GitSet模型进行步态与身份识别(CASIA-B数据集)
【Pytorch神经网络实战案例】29 【代码汇总】GitSet模型进行步态与身份识别(CASIA-B数据集)
229 0
|
机器学习/深度学习 PyTorch 测试技术
【Pytorch神经网络实战案例】28 GitSet模型进行步态与身份识别(CASIA-B数据集)
该数据集是一个大规模的、多视角的步态库。其中包括124个人,每个人有11个视角(0,18,36,...,180),在3种行走条件(普通、穿大衣、携带包裹)下采集。
403 0
|
机器学习/深度学习 人工智能 监控
【Pytorch神经网络理论篇】 35 GaitSet模型:步态识别思路+水平金字塔池化+三元损失
步态特征的距离匹配,对人在多拍摄角度、多行走条件下进行特征提取,得到基于个体的步态特征,再用该特征与其他个体进行比较,从而识别出该个体的具体身份。
491 0
|
机器学习/深度学习 PyTorch 算法框架/工具
【Pytorch神经网络实战案例】25 (带数据增强)基于迁移学习识别多种鸟类(CUB-200数据集)
在目前分类效果最好的EficientNet系列模型中,EfficientNet-B7版本的模型就是使用随机数据增强方法训练而成的。
388 0
|
机器学习/深度学习 PyTorch 算法框架/工具
【Pytorch神经网络实战案例】24 基于迁移学习识别多种鸟类(CUB-200数据集)
迁移学习指将在一个任务上训练完成的模型进行简单的修改,再用另一个任务的数据继续训练,使之能够完成新的任务。
687 0