一、前期准备
1.设置GPU
import torch import torch.nn as nn import torchvision.transforms as transforms import torchvision from torchvision import transforms,datasets import matplotlib.pyplot as plt import os,PIL,pathlib
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device
device(type='cuda')
2.导入数据
data_dir = './weather_photos/' data_dir = pathlib.Path(data_dir) data_paths = list(data_dir.glob('*')) classNames = [str(path).split('\\')[1] for path in data_paths] classNames
['cloudy', 'rain', 'shine', 'sunrise']
train_transforms = transforms.Compose([ transforms.Resize([224,224]),# resize输入图片 transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换成tensor transforms.Normalize( mean = [0.485, 0.456, 0.406], std = [0.229,0.224,0.225]) # 从数据集中随机抽样计算得到 ]) total_data = datasets.ImageFolder(data_dir,transform=train_transforms) total_data
Dataset ImageFolder Number of datapoints: 1125 Root location: weather_photos StandardTransform Transform: Compose( Resize(size=[224, 224], interpolation=PIL.Image.BILINEAR) ToTensor() Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) )
3.数据集划分
train_size = int(0.8*len(total_data)) test_size = len(total_data) - train_size train_size,test_size
(900, 225)
train_dataset, test_dataset = torch.utils.data.random_split(total_data,[train_size,test_size]) train_dataset,test_dataset
(<torch.utils.data.dataset.Subset at 0x246934b8df0>,
<torch.utils.data.dataset.Subset at 0x246934b82b0>)
batch_size = 32 train_dl = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=1) test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True, num_workers=1)
for X,y in test_dl: print('Shape of X [N, C, H, W]:', X.shape) print('Shape of y:', y.shape) break
Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224])
Shape of y: torch.Size([32])
二、构建简单的CNN网络
import torch.nn.functional as F num_classes = 4 # 图片的类别数 class Network_bn(nn.Module): def __init__(self): super().__init__() # 特征提取网络 self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(12) self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0) self.bn2 = nn.BatchNorm2d(12) self.pool = nn.MaxPool2d(2,2) self.conv3 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0) self.bn3 = nn.BatchNorm2d(24) self.conv4 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0) self.bn4 = nn.BatchNorm2d(24) # 分类网络 self.fc1 = nn.Linear(24*50*50,num_classes) # 前向传播 def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = self.pool(x) x = F.relu(self.bn3(self.conv3(x))) x = F.relu(self.bn4(self.conv4(x))) x = self.pool(x) x = x.view(-1,24*50*50) x = self.fc1(x) return x model = Network_bn().to(device) model
Network_bn( (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1)) (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1)) (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (conv3): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1)) (bn3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv4): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1)) (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (fc1): Linear(in_features=60000, out_features=4, bias=True) )
三、训练模型
1.设置超参数
loss_fn = nn.CrossEntropyLoss() # 创建损失函数 learn_rate = 1e-4 # 学习率 opt = torch.optim.SGD(model.parameters(),lr=learn_rate) opt
SGD ( Parameter Group 0 dampening: 0 lr: 0.0001 momentum: 0 nesterov: False weight_decay: 0 )
2.编写训练函数
# 训练循环 def train(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset) # 训练集的大小,一共900张图片 num_batches = len(dataloader) # 批次数目,29(900/32) train_loss, train_acc = 0, 0 # 初始化训练损失和正确率 for X, y in dataloader: # 获取图片及其标签 X, y = X.to(device), y.to(device) # 计算预测误差 pred = model(X) # 网络输出 loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失 # 反向传播 optimizer.zero_grad() # grad属性归零 loss.backward() # 反向传播 optimizer.step() # 每一步自动更新 # 记录acc与loss train_acc += (pred.argmax(1) == y).type(torch.float).sum().item() train_loss += loss.item() train_acc /= size train_loss /= num_batches return train_acc, train_loss
3.编写测试函数
与测试函数和训练函数大致相同,由于不需要进行梯度下降更新权重,所以不需要传入优化器。
def test (dataloader, model, loss_fn): size = len(dataloader.dataset) # 测试集的大小,一共10000张图片 num_batches = len(dataloader) # 批次数目,8(255/32=8,向上取整) test_loss, test_acc = 0, 0 # 当不进行训练时,停止梯度更新,节省计算内存消耗 with torch.no_grad(): for imgs, target in dataloader: imgs, target = imgs.to(device), target.to(device) # 计算loss target_pred = model(imgs) loss = loss_fn(target_pred, target) test_loss += loss.item() test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item() test_acc /= size test_loss /= num_batches return test_acc, test_loss
4、正式训练
epochs = 20 train_loss = [] train_acc = [] test_loss = [] test_acc = [] for epoch in range(epochs): model.train() epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt) model.eval() epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn) train_acc.append(epoch_train_acc) train_loss.append(epoch_train_loss) test_acc.append(epoch_test_acc) test_loss.append(epoch_test_loss) template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}') print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss)) print('Done')
Epoch: 1, Train_acc:61.3%, Train_loss:0.975, Test_acc:60.9%,Test_loss:0.961
...
Epoch:18, Train_acc:94.4%, Train_loss:0.255, Test_acc:87.6%,Test_loss:0.315
Epoch:19, Train_acc:93.8%, Train_loss:0.231, Test_acc:92.4%,Test_loss:0.226
Epoch:20, Train_acc:94.9%, Train_loss:0.187, Test_acc:92.0%,Test_loss:0.315
Done
四、结果可视化
import matplotlib.pyplot as plt #隐藏警告 import warnings warnings.filterwarnings("ignore") #忽略警告信息 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 plt.rcParams['figure.dpi'] = 100 #分辨率 epochs_range = range(epochs) plt.figure(figsize=(12, 3)) plt.subplot(1, 2, 1) plt.plot(epochs_range, train_acc, label='Training Accuracy') plt.plot(epochs_range, test_acc, label='Test Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, train_loss, label='Training Loss') plt.plot(epochs_range, test_loss, label='Test Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show()