一、 前期准备
1. 设置GPU
import torch import torch.nn as nn import matplotlib.pyplot as plt import torchvision device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device
2. 导入数据
使用dataset下载CIFAR10数据集,并划分好训练集与测试集。
使用dataloader加载数据,并设置好基本的batch_size
train_ds = torchvision.datasets.CIFAR10('data', train=True, transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor download=True) test_ds = torchvision.datasets.CIFAR10('data', train=False, transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor download=True)
train_ds = torchvision.datasets.CIFAR10('data', train=True, transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor download=True) test_ds = torchvision.datasets.CIFAR10('data', train=False, transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor download=True)
# 取一个批次查看数据格式 # 数据的shape为:[batch_size, channel, height, weight] # 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。 imgs, labels = next(iter(train_dl)) imgs.shape
torch.Size([32, 3, 32, 32])
3. 数据可视化
import numpy as np # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch) plt.figure(figsize=(20, 5)) for i, imgs in enumerate(imgs[:20]): # 维度缩减 npimg = imgs.numpy().transpose((1,2,0)) # 将整个figure分成2行10列,绘制第i+1个子图。 plt.subplot(2, 10, i+1) plt.imshow(npimg, cmap=plt.cm.binary) plt.axis('off')
二、构建简单的CNN网络
对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。
import torch.nn.functional as F num_classes = 10 # 图片的类别数 class Model(nn.Module): def __init__(self): super().__init__() # 特征提取网络 self.conv1 = nn.Conv2d(3, 64, kernel_size=3) self.pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(64, 64, kernel_size=3) self.pool2 = nn.MaxPool2d(2) self.conv3 = nn.Conv2d(64, 128, kernel_size=3) self.pool3 = nn.MaxPool2d(2) # 分类网络 self.fc1 = nn.Linear(512, 256) self.fc2 = nn.Linear(256, num_classes) # 前向传播 def forward(self, x): x = self.pool1(F.relu(self.conv1(x))) x = self.pool2(F.relu(self.conv2(x))) x = self.pool3(F.relu(self.conv3(x))) x = torch.flatten(x, start_dim=1) x = F.relu(self.fc1(x)) x = self.fc2(x) return x
打印并加载模型
from torchinfo import summary # 将模型转移到GPU中(我们模型运行均在GPU中进行) model = Model().to(device) summary(model)
=================================================================
Layer (type:depth-idx) Param #
=================================================================
Model --
├─Conv2d: 1-1 1,792
├─MaxPool2d: 1-2 --
├─Conv2d: 1-3 36,928
├─MaxPool2d: 1-4 --
├─Conv2d: 1-5 73,856
├─MaxPool2d: 1-6 --
├─Linear: 1-7 131,328
├─Linear: 1-8 2,570
=================================================================
Total params: 246,474
Trainable params: 246,474
Non-trainable params: 0
=================================================================
三、 训练模型
1. 设置超参数
loss_fn = nn.CrossEntropyLoss() # 创建损失函数 learn_rate = 1e-2 # 学习率 opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
2. 编写训练函数
1. optimizer.zero_grad()
函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。
2. loss.backward()
PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。
具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。
更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。
如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。
3. optimizer.step()
step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。
注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。
# 训练循环 def train(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset) # 训练集的大小,一共60000张图片 num_batches = len(dataloader) # 批次数目,1875(60000/32) train_loss, train_acc = 0, 0 # 初始化训练损失和正确率 for X, y in dataloader: # 获取图片及其标签 X, y = X.to(device), y.to(device) # 计算预测误差 pred = model(X) # 网络输出 loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失 # 反向传播 optimizer.zero_grad() # grad属性归零 loss.backward() # 反向传播 optimizer.step() # 每一步自动更新 # 记录acc与loss train_acc += (pred.argmax(1) == y).type(torch.float).sum().item() train_loss += loss.item() train_acc /= size train_loss /= num_batches return train_acc, train_loss
3. 编写测试函数
测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器
def test (dataloader, model, loss_fn): size = len(dataloader.dataset) # 测试集的大小,一共10000张图片 num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整) test_loss, test_acc = 0, 0 # 当不进行训练时,停止梯度更新,节省计算内存消耗 with torch.no_grad(): for imgs, target in dataloader: imgs, target = imgs.to(device), target.to(device) # 计算loss target_pred = model(imgs) loss = loss_fn(target_pred, target) test_loss += loss.item() test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item() test_acc /= size test_loss /= num_batches return test_acc, test_loss
4. 正式训练
1. model.train()
model.train()的作用是启用 Batch Normalization 和 Dropout。
如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()。model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropout,model.train()是随机取一部分网络连接来训练更新参数。
2. model.eval()
model.eval()的作用是不启用 Batch Normalization 和 Dropout。
如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()。model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropout,model.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。
训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。
epochs = 10 train_loss = [] train_acc = [] test_loss = [] test_acc = [] for epoch in range(epochs): model.train() epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt) model.eval() epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn) train_acc.append(epoch_train_acc) train_loss.append(epoch_train_loss) test_acc.append(epoch_test_acc) test_loss.append(epoch_test_loss) template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}') print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss)) print('Done')
Epoch: 1, Train_acc:12.3%, Train_loss:2.292, Test_acc:16.8%,Test_loss:2.244
Epoch: 2, Train_acc:24.0%, Train_loss:2.056, Test_acc:28.7%,Test_loss:1.933
Epoch: 3, Train_acc:32.1%, Train_loss:1.852, Test_acc:38.2%,Test_loss:1.709
Epoch: 4, Train_acc:39.9%, Train_loss:1.654, Test_acc:43.3%,Test_loss:1.567
Epoch: 5, Train_acc:44.2%, Train_loss:1.541, Test_acc:45.3%,Test_loss:1.494
Epoch: 6, Train_acc:47.5%, Train_loss:1.450, Test_acc:48.5%,Test_loss:1.420
Epoch: 7, Train_acc:50.9%, Train_loss:1.368, Test_acc:52.5%,Test_loss:1.343
Epoch: 8, Train_acc:53.6%, Train_loss:1.298, Test_acc:54.0%,Test_loss:1.293
Epoch: 9, Train_acc:56.3%, Train_loss:1.234, Test_acc:56.3%,Test_loss:1.241
Epoch:10, Train_acc:58.3%, Train_loss:1.182, Test_acc:57.5%,Test_loss:1.200
Done
四、 结果可视化
import matplotlib.pyplot as plt #隐藏警告 import warnings warnings.filterwarnings("ignore") #忽略警告信息 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 plt.rcParams['figure.dpi'] = 100 #分辨率 epochs_range = range(epochs) plt.figure(figsize=(12, 3)) plt.subplot(1, 2, 1) plt.plot(epochs_range, train_acc, label='Training Accuracy') plt.plot(epochs_range, test_acc, label='Test Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, train_loss, label='Training Loss') plt.plot(epochs_range, test_loss, label='Test Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show()