对滤波反投影重建算法的研究以phantom图进行matlab仿真,构建滤波器,重建图像

简介: 对滤波反投影重建算法的研究以phantom图进行matlab仿真,构建滤波器,重建图像

1.算法描述

   CT重建算法大致分为解析重建算法和迭代重建算法,随着CT技术的发展,重建算法也变得多种多样,各有各的有特点。本文使用目前应用最广泛的重建算法——滤波反投影算法(FBP)作为模型的基础算法。FBP算法是在傅立叶变换理论基础之上的一种空域处理技术。它的特点是在反投影前将每一个采集投影角度下的投影进行卷积处理,从而改善点扩散函数引起的形状伪影,重建的图像质量较好。

1.png

   上图应可以清晰的描述傅立叶中心切片定理的过程:对投影的一维傅立叶变换等效于对原图像进行二维的傅立叶变换。傅立叶切片定理的意义在于,通过投影上执行傅立叶变换,可以从每个投影中得到二维傅立叶变换。从而投影图像重建的问题,可以按以下方法进行求解:采集不同时间下足够多的投影(一般为180次采集),求解各个投影的一维傅立叶变换,将上述切片汇集成图像的二维傅立叶变换,再利用傅立叶反变换求得重建图像。

   投影重建的过程是,先把投影由线阵探测器上获得的投影数据进行一次一维傅立叶变换,再与滤波器函数进行卷积运算,得到各个方向卷积滤波后的投影数据;然后把它们沿各个方向进行反投影,即按其原路径平均分配到每一矩阵单元上,进行重叠后得到每一矩阵单元的CT值;再经过适当处理后得到被扫描物体的断层图像

算法步骤如下:

  1. 将原始投影进行一次一维傅立叶变换
  2. 设计合适的滤波器,在φ_i的角度下将得到原始投影p(x_r,φ_i)进行卷积滤波,得到滤波后的投影。
  3. 将滤波后的投影进行反投影,得到满足x_r=r cos⁡((θ - φ_i))方向上的原图像的密度。
  4. 将所有反投影进行叠加,得到重建后的投影。

2.仿真效果预览
matlab2013B仿真结果如下:
2.png
3.png
4.png
5.png
6.png
7.png

3.MATLAB部分代码预览

projMatrix=[];
detector=[];
proj=load(char('projection.mat'));
phyRatoDig=proj.phyRatoDig;
projMatrix=proj.projection;
yDetector=proj.yDetector;
nDetectors=proj.nDetectors;
 
figure(2)
showimge(projMatrix,360,512,0,max(max(projMatrix)));
 
 
D_dig=proj.focalDistance_dig;
sourceToDetector_dig=proj.focalDistance_dig+proj.detecDistance_dig;
s=[];
s=D_dig/sourceToDetector_dig*yDetector(1,:)*phyRatoDig;
Detector=yDetector(1,:)*phyRatoDig;
% 
 pe=[];
 M=D_dig./sqrt(D_dig.^2+s.^2);
 nViews=proj.nViews;
% 
 for i=1:nViews
    pe(i,:)=projMatrix(i,:).*M;
     
 end
 figure(3);
 showimge(pe,360,512,0,max(max(pe)));
 
 
 
disp('Filtering')
filternum=128;
filter_ramp=zeros(filternum,1);
for j=1:filternum   % 16 point ramp filter
    i=j-1-filternum/2;
    if(i==0)
     filter_ramp(j,1)=1/(8.0);
    elseif (mod(i,2)==0)
            filter_ramp(j,1)=0;
    elseif (mod(i,2)==1)
            filter_ramp(j,1)=-0.5/(i*i*pi*pi);
    end
end
m=1;
figure(4);
 
plot(filter_ramp);
 
 
pfilter=[];
length_conv=filternum+nDetectors-1;
pPro=zeros(length_conv,1);
temp_pro=zeros(nDetectors,1);
h_filter=filternum/2;
ii=length_conv-h_filter-nDetectors;
 for s=1:nViews % sample-loop
    % for  pp=1:h_filter
    pro_left =(pe(s,1)+pe(s,2))/2.0;
    pro_right=(pe(s,nDetectors)+pe(s,nDetectors-1))/2.0;
    
    for pp=1:h_filter;               %left part
        pPro(pp,1)=pro_left;        
    end
%    
    for pp=1:nDetectors                      %middle part
     pPro(h_filter+pp,1)=pe(s,pp);
    end
%    
   for pp=h_filter+nDetectors+1:length_conv
    pPro(pp)=pro_right;
    end
%   result_conv    
   for n=1:nDetectors 
       result_conv=0;
       for jj=1:filternum
        pPmove=pPro(n+jj-1,1);
        result_conv=result_conv+pPmove*filter_ramp(jj,1);
    end
    pfilter(s,n)=result_conv;
   end
 
    
 end
figure(5);
showimge(pfilter,360,512,min(min(pfilter)),max(max(pfilter)));
 
% %%%%%%%%%%%%%%%%%%%%%%reArrange%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%Back projection%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('BackProjection')
detecLength=proj.detecLength;
unitDis=detecLength/(nDetectors-1);
unitDis_dig=unitDis*phyRatoDig;
deltaBeta=2*pi/nViews;
 M=proj.M;
 N=proj.N;
 fReconstruct=[];
 for i=1:M
      x=i-(M+1)/2;
     for j=1:N
        y=(N+1)/2-j;
       r=sqrt(x^2+y^2);
        theta=atan2(y,x);
%     
        result=0; 
     for s=1:nViews
     beta= (s-1)*deltaBeta;
     s1=D_dig*r*cos(beta-theta)/(D_dig+r*sin(beta-theta));
     U=(D_dig+r*sin(beta-theta))/D_dig;
     p1=sourceToDetector_dig/D_dig*s1;
     if(p1>Detector(1,1)&&p1<Detector(1,512))
         num=(p1-Detector(1,1)+unitDis_dig)/unitDis_dig;        
         numlow=floor(num);
         result=result+((num-numlow)*pfilter(s,numlow)+(1-num+numlow)*pfilter(s,numlow+1))/U/U*deltaBeta;
     end
     end
     fReconstruct(i,j)=result;
     if( fReconstruct(i,j)<0)
         fReconstruct(i,j)=0;
     end
 
     end
 end
% 
 figure(6)
% 
final=zeros(M,N);
for i=1:M
    final(i,:)=fReconstruct(:,257-i);
end
A_022
相关文章
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。

热门文章

最新文章