Mysql索引数据结构为什么是B+树?

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: Mysql索引数据结构为什么是B+树?

Mysql索引数据结构

下面列举了常见的数据结构

  • 二叉树
  • 红黑树
  • Hash表
  • B-Tree(B树)

Select * from t where t.col=5

我们在执行一条查询的Sql语句时候,在数据量比较大又不加索引的情况下,逐行查询并进行比对,每次需要从磁盘上查找,每行数据可能在磁盘不同的位置,数据比较靠后的话,一千万数据可能要比对几百万,很耗费资源。

Mysql衡量查询效率的就是磁盘IO次数,那么Mysql中应该采用什么样的数据结构存储数据呢,以及为什么要使用那个数据结构呢。

二叉树

大多数人都知道,如果加上索引之后。把数据放在二叉树里面,查询会快很多,但是还有一种特殊的情况:

把一个递增列的索引放入二叉树中,列id作为等于5查询目标,就会从col为1开始搜索,这样要搜索几次?二叉树插入的数据如果大于本身,会放在父节点的右下角,小的会放在父节点的左下角,因此形成了这样像链表一样的结构,其实本质还是二叉树。

需要从根节点遍历,经过5次的查找,每个节点都存储在磁盘上,每查一个节点需要跟磁盘做一次IO交互,效率相比之前没加索引也没有太大提升,这显然不是Mysql的索引结构。

红黑树

HasMap的数据结构就是红黑树,原来是数组加链表,现在优化到了数组加红黑树。

红黑树本质还是二叉树,还有一个名字又叫平衡二叉树。当一边子节点比另一边高太多的时候,会自动旋转平衡。当数据量比较大的时候比如1000万,红黑树存储的高度就可能达到几十。如果数据量越大树的高度就会越高。每查一个节点要进行一次磁盘IO交互。树的高的越高查找效率越低,很显然红黑树也不是Mysql的数据结构,早期版本Mysql有用到红黑树,现在版本没有用到红黑树。那么能不能对红黑树做点改造。

B-Tree

树的高的越高查找效率越低,那么将树高缩小,比如限制在5层,把一层存放更多元素。把一个节点的数据在磁盘同一个区域全部查出来放到内存,只做一次IO查找,就可以查到很多索引信息。B树又叫平衡多叉树。

索引值和具体data都在每个节点里,而节点的位置不固定,最好的情况查找值就在第一层。

B树的特点就是每层节点数目非常多,层数很少,目的就是为了就少磁盘IO次数,B树在提高了磁盘IO性能的同时并没有解决元素遍历的效率低下的问题,由于节点内部每个 key 都带着 data 域,每次查找到具体节点还要和data进行顺序比对,如果查找某个范围内数据,又需要重新遍历。正是为了解决这个问题,B+树应运而生

B树遍历全部数据:

B+Tree

B+树节点只存储 key 的副本,真实的 key 和 data 域都在叶子节点存储,数据全部存储在叶子节,并且每一个节点之间用指针串联起来,形成链表,方便遍历,可以跨区间访问,这优点尤其突出在范围查询,不需要在一次从根节点到子节点遍历。

B+树遍历全部数据:

数据量大的情况下哪个更快,我想你应该知道了吧!

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
24天前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
1月前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
61 3
Mysql(4)—数据库索引
|
15天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
81 1
|
26天前
|
存储 关系型数据库 MySQL
如何在MySQL中进行索引的创建和管理?
【10月更文挑战第16天】如何在MySQL中进行索引的创建和管理?
54 1
|
16天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
47 0
|
27天前
|
监控 关系型数据库 MySQL
mysql8索引优化
综上所述,深入理解和有效实施这些索引优化策略,是解锁MySQL 8.0数据库高性能查询的关键。
28 0
|
1月前
|
SQL 关系型数据库 MySQL
美团面试:mysql 索引失效?怎么解决? (重点知识,建议收藏,读10遍+)
本文详细解析了MySQL索引失效的多种场景及解决方法,包括破坏最左匹配原则、索引覆盖原则、前缀匹配原则、`ORDER BY`排序不当、`OR`关键字使用不当、索引列上有计算或函数、使用`NOT IN`和`NOT EXISTS`不当、列的比对等。通过实例演示和`EXPLAIN`命令分析,帮助读者深入理解索引失效的原因,并提供相应的优化建议。文章还推荐了《尼恩Java面试宝典》等资源,助力面试者提升技术水平,顺利通过面试。
|
14天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
90 9
|
5天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
14 1
|
8天前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。

热门文章

最新文章