【非侵入式负荷监测】低采样率电动汽车充电的无训练非侵入式负荷监测(Matlab代码实现)

简介: 【非侵入式负荷监测】低采样率电动汽车充电的无训练非侵入式负荷监测(Matlab代码实现)

👨‍🎓个人主页:研学社的博客

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


image.gif

💥1 概述

摘要非侵入式负载监测(NILM)是智能电网和智能家居中的一个重要课题。已经提出了许多能量分解算法来从一个聚集的信号观测中检测各种单独的设备。

然而,由于电动汽车在家充电是最近才出现的,因此很少有研究在住宅环境中对插电式电动汽车(EV)充电进行能量分解的工作。最近的研究表明,电动汽车充电对智能电网有很大影响,尤其是在夏季。因此,电动汽车充电监测已成为能源分解中一个更为重要和紧迫的缺失部分。在本文中,我们提出了一种新的方法来从聚集的实际功率信号中分解EV充电信号。所提出的方法可以有效地减轻来自空调(AC)的干扰,在存在AC电力信号的情况下实现准确的EV充电检测和能量估计。此外,所提出的算法不需要训练,需要较轻的计算负载,提供较高的估计精度,并且适用于以1/60 Hz的低采样率记录的数据。当该算法在大约一整年(总共125个月的数据)内对11所房屋记录的真实世界数据进行测试时,估计电动汽车充电能耗的平均误差为15.7 kwh/月(而电动汽车充电的真实平均能耗为208.5 kwh/),分解电动汽车充电负载信号的平均归一化均方误差为0.19。

文献来源:

image.gif

📚2 运行结果

image.gif

image.gif

image.gif

image.gif

image.gif

image.gif

image.gif

image.gif编辑

部分代码:

% Reference:

%   Zhilin Zhang, Jae Hyun Son, Ying Li, Mark Trayer, Zhouyue Pi,

%   Dong Yoon Hwang, Joong Ki Moon, Training-Free Non-Intrusive Load

%   Monitoring of Electric Vehicle Charging with Low Sampling Rate,

%   The 40th Annual Conference of the IEEE Industrial Electronics Society

%   (IECON 2014), Oct.29-Nov.1, 2014, Dallas, TX

if iscolumn(orgAgg), orgAgg = orgAgg'; end;

EVest = zeros(size(orgAgg));

if isempty(contextInfo.EVamplitude),

   EVAMP = 3000;

else

   EVAMP = contextInfo.EVamplitude;

end

% Although one day has 1440 samples, we may want to estimate current day

% plus the early morning of the next day (because EV signal can happen

% around mid-night). So, orgAgg can be a vector including samples from

% current day and the early morning of the next day. Thus DAYLEN may be

% larger than 1440. However, in this simulation, we only focus on exactly

% one day. So, the length of orgAgg is 1440.

DAYLEN = length(orgAgg);    

%=====================================================================

% 1. Remove baseline noise

%    This can enhance the robustness (Sometimes the baseline noise is

%    very large, thus making the pre-set threshold value is not suitable).

%    The baseline noise will be further removed at the end of this

%    algorithm.

%=====================================================================

res = min(orgAgg);  

ts = orgAgg - res;

 

if verbose, fprintf('\nStep 1: Removed residual noise (%f) \n',res); end;

%=====================================================================

% 2. Thresholding

%=====================================================================

% Set threshold value

% We could set 3000, since EV always has amplitude >3000 W. However, this

% value will remove many context information (such as AC spikes and lumps),

% which is useful to remove ambiguility.

THRESHOLD = 2500;

if verbose, fprintf('Step 2: Calculate threshold value: %f\n',THRESHOLD); end;

% Thresholding

EVsignal = ts;

EVsignal(EVsignal<THRESHOLD) = 0;

% Record the thresholded signal

EV_step2 = EVsignal;      

% =========================================================================

%  3. Use bumpTrainFilter to remove AC spike trains

% =========================================================================

% Obtain segments with amplitude > THRESHOLD

[segment, ~] = getSegment(EVsignal);

if isempty(segment), EVest = zeros(size(ts)); return; end;

% Remove segments with short duration (basically from AC, dryer/oven, etc)

min_shrtDuration = 20;

max_duration = 90;

incrPercentage = 1;

segment_lowthr_info = bumpTrainFilter(segment, min_shrtDuration, max_duration, incrPercentage);

% Reconstruct the signal after filtering bump trains

EV_step3 = getSignal(segment_lowthr_info,EVsignal);

if isempty(EV_step3), EVest = zeros(size(ts)); return; end;

if verbose, fprintf('Step 3: Running bumpTrainFilter. \n'); end;

% =========================================================================

%  4. Fill the very short gaps between two successive segments

% =========================================================================

gapDistanceMax = 10;

[EV_step4, segment_lowthr_pit] = pitFilter(EVsignal,segment_lowthr_info,gapDistanceMax);

if verbose, fprintf('Step 4: Running pitFilter. \n'); end;

if verbose,

   set(0, 'DefaultFigurePosition', [300 10 600 700]);

   figure;

   subplot(411); plot(ts); title('Aggregated Signal After Removal Residual');

   subplot(412); plot(EV_step2); title(['Signal After Low Thresholding:',num2str(THRESHOLD)]);

   subplot(413); plot(EV_step3); title('Signal After BumpTrainFilter');

   subplot(414); plot(EV_step4); title('Signal After PitFilter');

end

%=====================================================================

% 5. Determine the type of each segment

%=====================================================================

newSegmentNum = size(segment_lowthr_pit,1);

heightResolution = 2;

differentiateRange = 200;

type = [];    

for k = 1 : newSegmentNum

   segment_study = EV_step4(segment_lowthr_pit(k,1):segment_lowthr_pit(k,2));

   [type(k), temp] = findType(segment_study, heightResolution, differentiateRange);

   changeAmplitude{k} = temp;

end

 

if verbose, fprintf('Step 5: Classify Segment Type. Type of Each Segment: \n'); disp(type);  end;

%=====================================================================

% 6. Energy disaggregation

%=====================================================================

finalSegmentInfo = [];  % Variable storing information of the EV segments.

                       % The (i,1)-th entry records the beginning

                       % location of the i-th segment. The (i,2)-th entry

                       % records the ending location of the i-th segment.

                       % The (i,3)-th entry records the height of the

                       % segment.

finalSegmentNb = 0;

for k = 1 : newSegmentNum

   if verbose, fprintf('Check No.%d Segment\n',k); end;

   

   curSegment = orgAgg(segment_lowthr_pit(k,1):segment_lowthr_pit(k,2));

     

   % Height of curSegment including residual noise

   rawHeight = getHeight(curSegment);

   

   % Remove approximate local residual noise

   avgNoiseAmplitude = localNoiseAmplitude([segment_lowthr_pit(k,1),segment_lowthr_pit(k,2)], orgAgg);

   curHeight = rawHeight - avgNoiseAmplitude;    

   

   

   if type(k) == 0

       % For this type, it is probably the dryer/oven waveforms, which has

       % no sharp drop-off in signal points at some amplitude. However, we

       % need to consider one rare situation, i.e. the almost completely

       % overlapping of EV and dryer/oven waveforms.

       

       if length(curSegment)<30 | length(curSegment)>300

           % jump to the next segment, thus automatically remove curSegment

       else

           if curHeight > 5500,

               % construct a square wave with height given

               % by 3500 (or taking from other EV waveforms)

               finalSegmentNb = finalSegmentNb + 1;

               finalSegmentInfo(finalSegmentNb,:) = [segment_lowthr_pit(k,1),segment_lowthr_pit(k,2),EVAMP,type(k)];

               

           else

               % jump to the next segment, thus automatically removing curSegment

           end

       end

           

       

   elseif type(k) == 1

       % For this type, it could be a single EV waveform (with residual

       % noise), an EV waveform overlapping with a narrow dryer/oven

       % waveform or with one or two bumps of AC

       %

       

       if length(curSegment) > 300 | curHeight < max(EVAMP - 300, 3000)

           % jump to the next segment, thus automatically removing curSegment

       else

                       

           % Flag to indicate whether curSegment is EV

           curSegmentEV = 1;

           

           % If curSegmentEV locates between 12pm-10pm (720 - 1320)

           curSegmentLoc1 = segment_lowthr_pit(k,1);

           curSegmentLoc2 = segment_lowthr_pit(k,2);

           if 1 <= curSegmentLoc1 & curSegmentLoc2 <= DAYLEN

               

               % if surrounding segments are AC spikes, and the top layer

               % of curSegment has no AC spikes (note it should be

               % classified as Type 2, but sometimes when the AC spike

               % number is one or two, and it may be classified as Type 1)

               

               % Remove dryer/oven waveform around the curSegment (2 hours

               % before and after curSegment)

               studyArea = EVsignal( [max(1,segment_lowthr_pit(k,1)-120) : max(1,segment_lowthr_pit(k,1)-1), ...

                   min(DAYLEN,segment_lowthr_pit(k,2)+1): min(DAYLEN,segment_lowthr_pit(k,2)+120)] );

               [studyArea_filtdryer, ~] = dryerFilter(studyArea);

               

               [ACseg,~] = getSegment(studyArea_filtdryer);

               

               % Remove AC spike train

               min_shrtDuration_sur = 25;

               max_duration_sur = min(90,max(min_shrtDuration_sur,length(curSegment)*0.6));

               incrPercentage_sur = 1;

               [~, rmvBumpInfo, removeFlag] = bumpTrainFilter(ACseg, min_shrtDuration_sur, max_duration_sur, incrPercentage_sur);

               

               if removeFlag & size(rmvBumpInfo,1)> 4

                   % Check if the top layer of curSegment has AC spikes;

                   % if so, then curSegment is EV; otherwise, not EV

                   

                   % get the segment information of the top layer

                   curSegment_topLayer = curSegment;

                   curSegment_topLayer(curSegment_topLayer < getHeight(curSegment)+ 1000) = 0;

                   

                   % -----------------------------------------------------

                   % Decide if the top layer has AC spikes using autocorrelation

                   [ACindicator] = ACdetector(curSegment_topLayer);

                   

                   if ~ACindicator

                       

                           curSegmentEV = 0;

                       

                   end

                   

               else

                   % Check if nearby segments have similar width as

                   % curSegment. If so, curSegment is not EV

                   

                   % Find the left segment closest to curSegment

                   leading_loc2 = max( segment(find(segment(:,2) < segment_lowthr_pit(k,1)),2)   );

                   

                   if ~isempty(leading_loc2)  % if leading_loc2 is empty, then curSegment is at the beginning of this day

                       leading_loc1 = max( segment(find(segment(:,1) < leading_loc2),1) );

                       leading_flag = 1;

                   else

                       leading_flag = 0;

                   end

                   

                   % Find the right segment closest to curSegment

                   following_loc1 = min( segment( find(segment_lowthr_pit(k,2) < segment(:,1)),1) );

                   

                   if ~isempty(following_loc1)  % if following_loc1 is empty, then curSegment is at the end of this day

                       following_loc2 = min( segment( find( following_loc1 < segment(:,2)),2) );

                       following_flag = 1;

                   else

                       following_flag = 0;

                   end

                   

                   if leading_flag & following_flag

                       

                       if length(curSegment)/length(leading_loc1:leading_loc2) < 3 & (segment_lowthr_pit(k,1)-leading_loc2 <= 30) | ...

                               length(curSegment)/length(following_loc1:following_loc2)< 3 & (following_loc1 - segment_lowthr_pit(k,2) <= 30)

                           % if surrounding segments have similar width and close gaps

                           curSegmentEV = 0;

                       end

                       

                   elseif leading_flag

                       if length(curSegment)/length(leading_loc1:leading_loc2) < 3 & (segment_lowthr_pit(k,1)-leading_loc2 <= 30)

                           curSegmentEV = 0;

                       end

                       

                   elseif following_flag

                       if length(curSegment)/length(following_loc1:following_loc2)< 3 & (following_loc1 - segment_lowthr_pit(k,2) <= 30)

                           curSegmentEV = 0;

                       end

                   end

                   

                   

               end

               

               

           end

           

           

           if curSegmentEV,

               % construct the EV signal

               finalSegmentNb = finalSegmentNb + 1;

               finalSegmentInfo(finalSegmentNb,:) = [segment_lowthr_pit(k,1),segment_lowthr_pit(k,2),curHeight,type(k)];

           end

   

       end

           

       

       

   elseif type(k) >= 2

       % For this type, it could be an overlap with EV and AC (with other

       % appliances). We need to determine whether the upper part

       % or the bottom part is an EV waveform

                 

           % determine the up-bound and the bottom-bound of the threshold

           upBound = max(curSegment)-200;

           bottomBound = max( changeAmplitude{k}(1)+200,  getHeight(curSegment) );

           

           

           highThreshold = max(5000, changeAmplitude{k}(1)*0.4 + changeAmplitude{k}(2)*0.6);

           if highThreshold <bottomBound  | highThreshold > upBound

               highThreshold = (bottomBound + upBound)/2;

           end

               

           topSegment = curSegment;  

           topSegment(topSegment<highThreshold) = 0;

       

           [topSegmentInfo, topSegNum] = getSegment(topSegment);  

       

           

       

       % Filling pits in topSegment with very short duration

       [topSegment2, topSegmentInfo2] = pitFilter(topSegment,topSegmentInfo,10);

       topSegNum2 = size(topSegmentInfo2,1);

       

       %figure(1);subplot(515); plot(topSegment2); title('Top Part After Filling Pits');

       

       

       topSegmentWidthList = diff(topSegmentInfo2');

       

       

       if length(curSegment) > 300

           % In this situation, the bottom one is AC part, and thus the top one is EV

           

           for tsn = 1 : topSegNum2

               

               % If each segment of the top part is long enough, then it

               % is an EV waveform

               if topSegmentWidthList(tsn) > 20

                   

                   % obtain current top segment associated with curSegment

                   segmentStudy = curSegment(topSegmentInfo2(tsn,1):topSegmentInfo2(tsn,2));  

                   

                   % check if it is a dryer waveform

                   windowLen = length(segmentStudy);   % window length (used to slide the aggregated signal)      

                   thr_crossRate = 5*windowLen/30;     % thresholding for level-crossing counting (a dryer should have larger counting than this value)

                   incremental = 200;                  % value to increase the level for level-crossing counting

                   [dryerFlag,~] = detectDryer(segmentStudy, windowLen, thr_crossRate, incremental); % detect whether dryer exists

                   

                   if ~dryerFlag   % if not dryer, then reconstruct a square signal by using its width and the height

 

                       % location of beginning and the ending of the top bump in the whole aggregated signal

                       globalLocation = [topSegmentInfo2(tsn,1) + segment_lowthr_pit(k,1)-1, ...

                                         topSegmentInfo2(tsn,2) + segment_lowthr_pit(k,1)-1];

                       

                       

                       % calculate the height of the bump

                       topHeight = getHeight( curSegment(topSegmentInfo2(tsn,1):topSegmentInfo2(tsn,2)));

                       

                       % calculate the height of the bottom bump

                       bottomHeight = getHeight(curSegment);

                       

                   

                       % height

                       curHeight = topHeight - bottomHeight;

                       

                       

                       % determine if there is random flunctuation

                       if max(ts(globalLocation)) > 6000

                           if curHeight < 3500,

                               curHeight = 3500;

                           end  

                       

                           % record the information of the bump

                           finalSegmentNb = finalSegmentNb + 1;

                           finalSegmentInfo(finalSegmentNb,:) = [globalLocation, curHeight, type(k)];

                       end

                   

                   end

                         

               end

           end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Zhilin Zhang, Jae Hyun Son, Ying Li, Mark Trayer, Zhouyue Pi, Dong Yoon Hwang, Joong Ki Moon, Training-Free Non-Intrusive Load Monitoring of Electric Vehicle Charging with Low Sampling Rate, The 40th Annual Conference of the IEEE Industrial Electronics Society (IECON 2014), Oct.29-Nov.1, 2014, Dallas, TX

🌈4 Matlab代码实现

相关文章
|
4月前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
199 73
|
3月前
|
安全 调度
电力系统的负荷损失和潮流计算matlab仿真,对比最高度数,最高介数以及最高关键度等节点攻击
本课题研究节点攻击对电力系统稳定性的影响,通过模拟最高度数、最高介数和最高关键度攻击,对比不同攻击方式下的停电规模。采用MATLAB 2022a 进行系统仿真,核心程序实现线路断开、潮流计算及优化。研究表明,节点攻击会导致负荷损失和系统瘫痪,对电力系统的安全构成严重威胁。通过分析负荷损失率和潮流计算,提出减少负荷损失的方法,以提升电力系统的稳定性和安全性。
|
3月前
|
算法 调度
基于CVX凸优化的电动汽车充放电调度matlab仿真
本程序基于CVX凸优化实现电动汽车充放电调度,通过全局和局部优化求解,展示了不同情况下的负载曲线。程序在MATLAB 2022a上运行,有效平抑电网负荷峰值,提高电网稳定性。
|
7月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
128 6
|
8月前
|
机器学习/深度学习 算法
m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
204 4
|
7月前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为&quot;Ttttttt111222&quot;,优化后为&quot;Tttttttt333444&quot;,明显改进体现为&quot;Tttttttttt5555&quot;。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用&#39;adam&#39;优化器和超参数调整,最终评估并保存预测结果。
69 0
|
8月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
259 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
154 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
127 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章