HashMap 1.8 源码简读
初始大小:默认为16
/**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
如果指定了大小,则会在初始化的时候将初始容量大小设置为大于等于指定初始值、且最小的2的整数次幂。
原理:
①在HashMap
的构造方法HashMap(int initialCapacity, float loadFactor)
或HashMap(int initialCapacity)
中,会通过tableSizeFor
方法将threshold
的值置为2的整数次幂。
②在第一次调用put(K key, V value)
方法添加元素时,会调用resize()
方法来初始化table
,而在resize()
方法中,此时初始容量会被threshold
的值代替。
关键代码如下所示:
public HashMap(int initialCapacity, float loadFactor) {
...
this.threshold = tableSizeFor(initialCapacity);
}
请看resize()方法中的这行注释:initial capacity was placed in threshold
final Node<K,V>[] resize() {
...
if (oldCap > 0) {
...
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
...
}
...
}
如上所示,HashMap在指定了初始化容量之后,初始容器的大小会变为大于等于指定初始值、且最小的2的整数次幂。
tableSizeFor方法如下所示:
/**
* Returns a power of two size for the given target capacity.
*/
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
返回大于等于输入参数且最近的2的整数次幂的数.
测试结果如下:
tableSizeFor(0):1
tableSizeFor(1):1
tableSizeFor(2):2
tableSizeFor(3):4
tableSizeFor(4):4
tableSizeFor(5):8
tableSizeFor(6):8
tableSizeFor(7):8
tableSizeFor(8):8
tableSizeFor(9):16
装载因子和动态扩容:
装载因子:默认为0.75,可在HashMap初始化时设置。
/**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
扩容规则是新的容量是原来容量的两倍。
HashMap中table数组的初始化和动态扩容的方法是resize(),关于扩容容量的代码如下:
注意这行代码:newCap = oldCap << 1
/**
* Initializes or doubles table size. If null, allocates in
* accord with initial capacity target held in field threshold.
* Otherwise, because we are using power-of-two expansion, the
* elements from each bin must either stay at same index, or move
* with a power of two offset in the new table.
*
* @return the table
*/
final Node<K,V>[] resize() {
...
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
...
else { // zero initial threshold signifies using defaults
...
}
...
}
触发扩容操作的阈值:threshold
计算规则:threshold = capacity * loadFactor
变量定义如下:
/**
* The next size value at which to resize (capacity * load factor).
*
* @serial
*/
// (The javadoc description is true upon serialization.
// Additionally, if the table array has not been allocated, this
// field holds the initial array capacity, or zero signifying
// DEFAULT_INITIAL_CAPACITY.)
int threshold;
扩容触发条件:数据数量大于阈值时。
代码在resize()方法中:
if (++size > threshold)
resize();
触发扩容操作以后,会在resize()方法中进行数据迁移。是一次性数据迁移,细节请看源码。
散列冲突解决方法:链表法加红黑树
链表转化成红黑树,红黑树转化成链表。
1、链表转化成红黑树:
HashMap#putVal方法中,当在该角标下,原有存储的链表结点个数大于等于7的时候,就将链表转化为红黑树。具体方法代码如下:
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
具体的转换过程请看treeifyBin
方法。
2、红黑树转化成链表:
当冲突以红黑树形态情况下,进行扩充时,将树转成两棵树,若树的的结点数小于等于UNTREEIFY_THRESHOLD,则转为链表形式。
细节请看split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit)
方法。
HashMap中的散列函数
hash方法如下:
/**
* Computes key.hashCode() and spreads (XORs) higher bits of hash
* to lower. Because the table uses power-of-two masking, sets of
* hashes that vary only in bits above the current mask will
* always collide. (Among known examples are sets of Float keys
* holding consecutive whole numbers in small tables.) So we
* apply a transform that spreads the impact of higher bits
* downward. There is a tradeoff between speed, utility, and
* quality of bit-spreading. Because many common sets of hashes
* are already reasonably distributed (so don't benefit from
* spreading), and because we use trees to handle large sets of
* collisions in bins, we just XOR some shifted bits in the
* cheapest possible way to reduce systematic lossage, as well as
* to incorporate impact of the highest bits that would otherwise
* never be used in index calculations because of table bounds.
*/
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
在插入或查找的时候,计算key被映射到的位置
int index = hash(key) & (capacity - 1)
JDK HashMap中hash函数的设计,确实很巧妙:
首先hashcode本身是个32位整型值,这个值对于不同的对象必须保证唯一(Java规范),这也是大家常说的,重写equals必须重写hashcode的重要原因。
获取对象的hashcode以后,先进行移位运算,然后再和自己做异或运算,及hashcode ^ (hashcode >>> 16),这一步甚是巧妙,是将高16位移到低16位,这样计算出来的整型值将“具有”高位和低位的性质。
最后,用hash表当前的容量减去一,再和刚刚计算出来的整型值做位与运算。进行位与运算,很好理解,是为了计算出数组中的位置。但这里有个问题:为什么要用容量减去一?
因为 A % B = A & (B - 1),所以(h ^ (h >>> 16)) & (capitity -1) = (h ^ (h >>> 16)) % capitity
,可以看出这里本质上是使用了[除留余数法]。
综上,可以看出,hashcode的随机性,加上移位异或运算,得到一个非常随机的hash值,再通过[除留余数法],得到index,整体的设计过程和“散列函数”设计原则非常吻合。