DAPP挖矿开发详情丨DAPP挖矿系统开发(开发逻辑)丨DAPP挖矿系统源码交付

简介: 简单来说,DApp和普通App的原理是一样的,只不过它们是完全去中心化的。DAPP像以太√坊网络本身一样由自己的节点运营,不依赖于任何集中式服务器。DAPP是去中心化的,可以完全自动运行。

  区块链作为一个基础设施,提供了一个分布式去中心化的可信数据库。基于此,人们可以针对不同的场景开发各种应用。

  简单来说,DApp和普通App的原理是一样的,只不过它们是完全去中心化的。DAPP像以太√坊网络本身一样由自己的节点运营,不依赖于任何集中式服务器。DAPP是去中心化的,可以完全自动运行。

  目前,DApp通常是指在以太√坊或EOS上基于智能合约开发的相关应用。

  swap是普通用户进行代币交易的操作。普通用户通过swap操作实现两种token之间的交易。

  function swapExactTokensForTokens

  uint amountIn,

  uint amountOutMin,

  address[]calldata path,

  address to,

  uint deadline

  )external virtual override ensure(deadline)returns(uint[]memory amounts){

  Uniswap支持多种代币的交换。具体的含义是,Uniswap提供了多级交易池的路由功能。

  举个例子,已有两个交易对TokenA-TokenB,以及TokenB-TokenC,通过swap接口,可以实现TokenA-TokenC的交换,其中经过的TokenA-TokenB,TokenB-TokenC,称为路径(path)。amountIn是路径中的第一个代币的数量,amountOutMin是期望的交换后的最少的数量。

  amounts=UniswapV2Library.getAmountsOut(factory,amountIn,path);

  require(amounts[amounts.length-1]>=amountOutMin,‘UniswapV2Router:INSUFFICIENT_OUTPUT_AMOUNT’);

  amounts是每个路径上的交换后的数量。amounts[amounts.length-1]也就是最后一条路径的输出数量。

  注意,UniswapV2Library.getAmountsOut的实现(在获取每个交易对的reserve信息后,调用getAmountOut函数):

  function getAmountOut(uint amountIn,uint reserveIn,uint reserveOut)internal pure returns(uint amountOut){

  require(amountIn>0,'UniswapV2Library:INSUFFICIENT_INPUT_AMOUNT');

  require(reserveIn>0&&reserveOut>0,'UniswapV2Library:INSUFFICIENT_LIQUIDITY');

  uint amountInWithFee=amountIn.mul(997);

  uint numerator=amountInWithFee.mul(reserveOut);

  uint denominator=reserveIn.mul(1000).add(amountInWithFee);

  amountOut=numerator/denominator;

  }

  TransferHelper.safeTransferFrom(

  path[0],msg.sender,UniswapV2Library.pairFor(factory,path[0],path[1]),amounts[0]

  );

  将代币path[0],转入到交易对,数量为amounts[0]。转入代币后,进行真正的swap操作:

  function _swap(uint[]memory amounts,address[]memory path,address _to)internal virtual{

  for(uint i;i<path.length-1;i++){

  (address input,address output)=(path<i>,path[i+1]);

  (address token0,)=UniswapV2Library.sortTokens(input,output);

  uint amountOut=amounts[i+1];

  (uint amount0Out,uint amount1Out)=input==token0?(uint(0),amountOut):(amountOut,uint(0));

  address to=i<path.length-2?UniswapV2Library.pairFor(factory,output,path[i+2]):_to;

  IUniswapV2Pair(UniswapV2Library.pairFor(factory,input,output)).swap(

  amount0Out,amount1Out,to,new bytes(0)

  );

  }

  }

  原理比较简单,针对每一条路径,调用交易对的swap操作。

  Core逻辑

  Core逻辑实现了单个交易对的逻辑。通过UniswapV2Factory可以创建一个个Pair(交易池)。每个具体实现逻辑在UniswapV2Pair中。

  mint

  每个交易对创建流动性。

  function mint(address to)external lock returns(uint liquidity){

  因为在调用mint函数之前,在addLiquidity函数已经完成了转账,所以,从这个函数的角度,两种代币数量的计算方式如下:

  uint balance0=IERC20(token0).balanceOf(address(this));

  uint balance1=IERC20(token1).balanceOf(address(this));

  uint amount0=balance0.sub(_reserve0);

  uint amount1=balance1.sub(_reserve1);

  当前的balance是当前的reserve加上注入的流动性的代币数量。

  uint _totalSupply=totalSupply;//gas savings,must be defined here since totalSupply can update in _mintFee

  if(_totalSupply==0){

  liquidity=Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);

  _mint(address(0),MINIMUM_LIQUIDITY);//permanently lock the first MINIMUM_LIQUIDITY tokens

  }else{

  liquidity=Math.min(amount0.mul(_totalSupply)/_reserve0,amount1.mul(_totalSupply)/_reserve1);

  }

  _mint(to,liquidity);

  流动性liquidity的计算方式在第一次提供流动性时和其他时候稍稍不同。第一次提供流动性的计算公式如下:

  liquidity=sqrt(x0*y0)-min

  其中min是10^3。也就是说,第一次提供流动性是有最小流动性要求的。其他提供流动性的计算公式如下:

  liquidity=min((x0/reserve0totalsupply),(y0/reserve1totalsupply))

  也就说,按照注入的流动性和当前的reserve的占比一致。

  burn

  burn函数用在抽取流动性。burn逻辑和mint逻辑类似。

  function burn(address to)external lock returns(uint amount0,uint amount1){

  3.swap

  swap函数实现两种代币的兑换。

  function swap(uint amount0Out,uint amount1Out,address to,bytes calldata data)external lock{

  一个交易池的swap操作支持两个方向的兑换,可以从TokenA换到TokenB,或者TokenB换到TokenA。

  if(amount0Out>0)_safeTransfer(_token0,to,amount0Out);//optimistically transfer tokens

  if(amount1Out>0)_safeTransfer(_token1,to,amount1Out);//optimistically transfer tokens

  因为在swapExactTokensForTokens的getAmountOut函数已经确定兑换处的金额。所以,先直接转账。

  在不做swap之前,balance应该和reserve相等的。通过balance和reserve的差值,可以反推出输入的代币数量:

  uint amount0In=balance0>_reserve0-amount0Out?balance0-(_reserve0-amount0Out):0;

  uint amount1In=balance1>_reserve1-amount1Out?balance1-(_reserve1-amount1Out):0;

  确保反推的输入代币数量不小于零。

  require(amount0In>0||amount1In>0,‘UniswapV2:INSUFFICIENT_INPUT_AMOUNT’);

相关文章
|
安全 区块链 数据安全/隐私保护
DeFi流行性挖矿系统开发 | 质押模式挖矿软件平台源码案例
DeFi流行性挖矿系统开发 | 质押模式挖矿软件平台源码案例
|
存储 算法 区块链
GRETT格莱特智能合约系统开发|格莱特质押模式系统开发DAPP技术搭建
“去中心化”是区块链的典型特征之一 The liquidity providers provide the pool with the two
|
存储 前端开发 JavaScript
区块链交易所系统开发(正式版)丨DEX/DEFI/SWAP去中心化智能合约系统开发详细案例/方案项目/技术分析/源码功能
  去中心化存储技术是一种新型存储技术,它改变了传统的集中式存储技术,将数据从单一位置移到多个位置,这样就消除了存储数据的中心机构或服务器的责任,增加了安全性和数据的有效存储,确保用户的数据安全性。
|
Go 区块链
以太坊挖矿系统开发二开源码
以太坊挖矿系统开发二开源码
|
存储 人工智能 边缘计算
什么是DAPP智能合约系统开发?DAPP智能合约流动性质押挖矿分红逻辑系统开发详情方案及设计
  Web 3.0:指的移动互联网后的下一个阶段的互联网生态,主要是通过区块链等技术手段,实现去中心化的网络形态,实现模拟真实世界感受、打破虚拟、现实边界的互联网;
什么是DAPP智能合约系统开发?DAPP智能合约流动性质押挖矿分红逻辑系统开发详情方案及设计
|
区块链
dapp质押挖矿系统开发设计概述
DApp(去中心化应用)质押挖矿系统是基于区块链技术构建的一种去中心化应用,它结合了质押和挖矿的概念,让用户可以通过质押代币来参与挖矿活动并获得相应的奖励。
DAPP钱包交易所系统开发技术详细/方案项目/案例详细/源码功能
Blockchain technology is generally used to build transaction systems, and it is necessary to ensure that the transaction information is authentic, traceable, and tamper proof. The information of each transaction is confirmed and stored in a block,。
|
JSON 区块链 数据格式
dapp互助公排质押挖矿开发详情版丨dapp互助公排质押挖矿系统开发(方案及功能)丨dapp互助公排质押挖矿源码平台
 智能合约是运行在区块链公链上的一种代码,该代码由Solidity编写,并通过区块链的智能合约虚拟机来执行,以达到对区块链编程的目标。可以将区块链公联理解为操作系统,Solidity是编写该操作系统应用程序的编程语言,智能合约虚拟机则是编程语言编译之后的代码运行环境。
|
区块链
web3 智能合约dapp挖矿元宇宙链游系统开发技术详情
web3 智能合约dapp挖矿元宇宙链游系统开发技术详情