设计稳定的微服务系统时不得不考虑的场景

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介: 我们的生产环境经常会出现一些不稳定的情况,如:1、大促时瞬间洪峰流量导致系统超出最大负载,load 飙高,系统崩溃导致用户无法下单2、“黑马”热点商品击穿缓存,DB 被打垮,挤占正常流量3、调用端被不稳定服务拖垮,线程池被占满,导致整个调用链路卡死这些不稳定的场景可能会导致严重后果。大家可能想问:如何做到均匀平滑的用户访问?如何预防流量过大或服务不稳定带来的影响?

我们的生产环境经常会出现一些不稳定的情况,如:


  • 大促时瞬间洪峰流量导致系统超出最大负载,load 飙高,系统崩溃导致用户无法下单
  • “黑马”热点商品击穿缓存,DB 被打垮,挤占正常流量
  • 调用端被不稳定服务拖垮,线程池被占满,导致整个调用链路卡死


这些不稳定的场景可能会导致严重后果。大家可能想问:如何做到均匀平滑的用户访问?如何预防流量过大或服务不稳定带来的影响?

介绍

下面两种方式是在面对流量不稳定因素时常见的两种方案,也是我们在涉及高可用的系统前不得不考虑的两种能力,是服务流量治理中非常关键的一环。

流量控制

流量是非常随机性的、不可预测的。前一秒可能还风平浪静,后一秒可能就出现流量洪峰了(例如双十一零点的场景)。每个系统、服务都有其能承载的容量上限,如果突然而来的流量超过了系统的承受能力,就可能会导致请求处理不过来,堆积的请求处理缓慢,CPU/Load 飙高,最后导致系统崩溃。因此,我们需要针对这种突发的流量来进行限制,在尽可能处理请求的同时来保障服务不被打垮,这就是流量控制。

熔断降级

一个服务常常会调用别的模块,可能是另外的一个远程服务、数据库,或者第三方 API 等。例如,支付的时候,可能需要远程调用银联提供的 API;查询某个商品的价格,可能需要进行数据库查询。然而,这个被依赖服务的稳定性是不能保证的。如果依赖的服务出现了不稳定的情况,请求的响应时间变长,那么调用服务的方法的响应时间也会变长,线程会产生堆积,最终可能耗尽业务自身的线程池,服务本身也变得不可用。



现代微服务架构都是分布式的,由非常多的服务组成。不同服务之间相互调用,组成复杂的调用链路。以上的问题在链路调用中会产生放大的效果。复杂链路上的某一环不稳定,就可能会层层级联,最终导致整个链路都不可用。因此我们需要对不稳定的弱依赖服务进行熔断降级,暂时切断不稳定调用,避免局部不稳定因素导致整体的雪崩。


Q:不少同学在问了,那么是不是服务的量级很小就不用进行流量控制限流防护了呢?是不是微服务的架构比较简单就不用引入熔断保护机制了呢?

A:其实,这与请求的量级、架构的复杂程度无关。很多时候,可能正是一个非常边缘的服务出现故障而导致整体业务受影响,造成巨大损失。我们需要具有面向失败设计的意识,在平时就做好容量规划和强弱依赖的梳理,合理地配置流控降级规则,做好事前防护,而不是在线上出现问题以后再进行补救。


在流量控制、降级与容错场景下,我们有多种方式来描述我们的治理方案,下面我将介绍一套开放、通用的、面向分布式服务架构、覆盖全链路异构化生态的服务治理标准 OpenSergo,我们看看 OpenSergo 是如何定义流控降级与容错的标准,以及支撑这些标准的实现有哪些,能帮助我们解决哪些问题?

OpenSergo 流控降级与容错 v1alpha1 标准

在 OpenSergo 中,我们结合 Sentinel 等框架的场景实践对流控降级与容错场景的实现抽象出标准的 CRD。我们可以认为一个容错治理规则 (FaultToleranceRule) 由以下三部分组成:

  • Target: 针对什么样的请求
  • Strategy: 容错或控制策略,如流控、熔断、并发控制、自适应过载保护、离群实例摘除等
  • FallbackAction: 触发后的 fallback 行为,如返回某个错误或状态码

那我们看看针对常用的流控降级场景,OpenSergo具体的标准定义是什么样的,他是如何解决我们的问题的?

首先提到的,只要微服务框架适配了 OpenSergo,即可通过统一 CRD 的方式来进行流控降级等治理。无论是 Java 还是 Go 还是 Mesh 服务,无论是 HTTP 请求还是 RPC 调用,还是数据库 SQL 访问,我们都可以用这统一的容错治理规则 CRD 来给微服务架构中的每一环配置容错治理,来保障我们服务链路的稳定性。让我们来详细看看OpenSergo在各个具体场景下的一个配置。

流量控制

以下示例定义了一个集群流控的策略,集群总体维度每秒不超过 180个请求。示例 CR YAML:

apiVersion: fault-tolerance.opensergo.io/v1alpha1
kind: RateLimitStrategy
metadata:  name: rate-limit-foo
spec:  metricType: RequestAmount
  limitMode: Global
  threshold: 180  statDuration: "1s"

这样一个简单的 CR 就能给我们的系统配置上一个流量控制的能力,流控能力相当于应用的一个安全气囊,超出系统服务能力以外的请求将被拒绝,具体逻辑可由我们自定义(如返回指定内容或跳转页面)。

熔断保护

以下示例定义了一个慢调用比例熔断策略,示例 CR YAML:

apiVersion: fault-tolerance.opensergo.io/v1alpha1
kind: CircuitBreakerStrategy
metadata:  name: circuit-breaker-slow-foo
spec:  strategy: SlowRequestRatio
  triggerRatio: '60%'  statDuration: '30s'  recoveryTimeout: '5s'  minRequestAmount: 5  slowConditions:    maxAllowedRt: '500ms'

这个 CR 的语意就是:在 30s 内请求超过 500ms 的比例达到 60% 时,且请求数达到5个,则会自动触发熔断,熔断恢复时长为 5s。

想象一下,在业务高峰期。当某些下游的服务提供者遇到性能瓶颈,甚至影响业务。我们对部分非关键服务消费者配置一个这样的规则,当一段时间内的慢调用比例或错误比例达到一定条件时自动触发熔断,后续一段时间服务调用直接返回 Mock 的结果,这样既可以保障调用端不被不稳定服务拖垮,又可以给不稳定下游服务一些“喘息”的时间,同时可以保障整个业务链路的正常运转。


流控降级与容错标准的实现

Sentinel 介绍

下面介绍一款支持 OpenSergo 流控降级与容错标准的项目 Sentinel

Sentinel 是阿里巴巴开源的,面向分布式服务架构的流量控制组件,主要以流量为切入点,从流量控制、流量整形、熔断降级、系统自适应保护等多个维度来帮助开发者保障微服务的稳定性。


Sentinel 的技术亮点:

  • 高度可扩展能力:基础核心 + SPI 接口扩展能力,用户可以方便地扩展流控、通信、监控等功能
  • 多样化的流量控制策略(资源粒度、调用关系、流控指标、流控效果等多个维度),提供分布式集群流控的能力
  • 热点流量探测和防护
  • 对不稳定服务进行熔断降级和隔离
  • 全局维度的系统负载自适应保护,根据系统水位实时调节流量
  • 覆盖 API Gateway 场景,为 Spring Cloud Gateway、Zuul 提供网关流量控制的能力
  • 云原生场景提供 Envoy 服务网格集群流量控制的能力
  • 实时监控和规则动态配置管理能力



一些普遍的使用场景:


  • 在服务提供方(Service Provider)的场景下,我们需要保护服务提供方自身不被流量洪峰打垮。这时候通常根据服务提供方的服务能力进行流量控制,或针对特定的服务调用方进行限制。我们可以结合前期压测评估核心接口的承受能力,配置 QPS 模式的限流,当每秒的请求量超过设定的阈值时,会自动拒绝多余的请求。
  • 为了避免调用其他服务时被不稳定的服务拖垮自身,我们需要在服务调用端(Service Consumer)对不稳定服务依赖进行隔离和熔断。手段包括信号量隔离、异常比例降级、RT 降级等多种手段。
  • 当系统长期处于低水位的情况下,流量突然增加时,直接把系统拉升到高水位可能瞬间把系统压垮。这时候我们可以借助 Sentinel 的 WarmUp 流控模式控制通过的流量缓慢增加,在一定时间内逐渐增加到阈值上限,而不是在一瞬间全部放行。这样可以给冷系统一个预热的时间,避免冷系统被压垮。
  • 利用 Sentinel 的匀速排队模式进行“削峰填谷”,把请求突刺均摊到一段时间内,让系统负载保持在请求处理水位之内,同时尽可能地处理更多请求。
  • 利用 Sentinel 的网关流控特性,在网关入口处进行流量防护,或限制 API 的调用频率。

阿里云微服务解决方案

在阿里云上提供了一款完全遵循 OpenSergo 微服务标准的企业级产品 MSE,MSE 服务治理的企业版中的流量治理能力我们可以理解为是一个商业化版本的 Sentinel ,我们也简单总结了一下 MSE 流量治理与社区方案在流控降级与容错场景下的一个能力对比。

下面我将基于 MSE 来演示一下,如何通过流量控制与熔断降级来保护我们的系统,可以从容地面对不确定性的流量以及一系列不稳定的场景。

配置流控规则

我们可以在监控详情页面查看每个接口实时的监控情况。

我们可以点击接口概览右上角的“新增防护规则”按钮,添加一条流控规则:

我们可以配置最简单的 QPS 模式的流控规则,比如上面的例子即限制该接口每秒单机调用量不超过 80 次。

监控查看流控效果

配置规则后,稍等片刻即可在监控页面看到限流效果:

被拒绝的流量也会返回错误信息。MSE 自带的框架埋点都有默认的流控处理逻辑,如 Web 接口被限流后返回 429 Too Many Requests,DAO 层被限流后抛出异常等。若用户希望更灵活地定制各层的流控处理逻辑,可以通过 SDK 方式接入并配置自定义的流控处理逻辑

总结

流控降级与容错是我们设计稳定的微服务系统时不得不考虑的场景,如果我们设计每一套系统都要花许多心思来设计系统的流控降级与容错能力,这将会成为让我们每一个开发者都头疼的问题。那么我们接触与设计了那么多系统的流控降级,有没什么通用的场景、最佳实践、设计标准与规范乃至参考实现可以沉淀的?

本文从场景出发简单介绍了 OpenSergo 的流量控制与熔断保护标准,同时也介绍了 Sentinel 流量防护的背景和手段,最后通过示例来介绍如何利用 MSE 服务治理的流量防护能力来为 您的应用保驾护航。

OpenSergo标准目前仅仅是v1alpha1的版本。可以预见的,在 OpenSergo 服务治理标准的不断制定、发展上我们还有很多的路要走。如果您也对流控降级与容错的场景有诉求,对微服务治理的标准建设有兴趣,欢迎您的加入。我们会通过公开、透明、民主的方式来制定标准、推动实施。在社区也通过 GitHub issue、Gitter、邮件列表、社区双周会等机制,确保通过社区协作的方式来共建标准与实现。欢迎大家通过这些形式一起来讨论、共建。


相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
29天前
|
监控 持续交付 API
深入理解微服务架构:构建高效、可扩展的系统
【10月更文挑战第14天】深入理解微服务架构:构建高效、可扩展的系统
78 0
|
3月前
|
Kubernetes 负载均衡 微服务
Kubernetes 生态系统中的微服务治理
【8月更文第29天】随着微服务架构的普及,管理分布式系统的复杂性也随之增加。Kubernetes 作为容器编排的事实标准,为微服务架构提供了强大的支持。结合像 Istio 这样的服务网格工具,Kubernetes 能够有效地解决微服务治理中的诸多挑战,如服务发现、负载均衡、流量管理和安全策略等。
56 1
|
3月前
|
Java UED Sentinel
微服务守护神:Spring Cloud Sentinel,让你的系统在流量洪峰中稳如磐石!
【8月更文挑战第29天】Spring Cloud Sentinel结合了阿里巴巴Sentinel的流控、降级、熔断和热点规则等特性,为微服务架构下的应用提供了一套完整的流量控制解决方案。它能够有效应对突发流量,保护服务稳定性,避免雪崩效应,确保系统在高并发下健康运行。通过简单的配置和注解即可实现高效流量控制,适用于高并发场景、依赖服务不稳定及资源保护等多种情况,显著提升系统健壮性和用户体验。
84 1
|
2月前
|
缓存 Java 开发者
开发故事:一个 @Async 如何搞瘫整个微服务系统
大家好,我是小米,一个热爱分享技术的29岁开发者。本文讲述了一个困扰我们团队的开发环境问题,最终发现罪魁祸首竟是 `@Async` 注解。我们通过详细分析错误日志和 Spring 的 Bean 代理机制,逐步排查并解决了这一难题。文章介绍了三种解决方案:调整依赖结构、使用 `@Lazy` 延迟加载以及禁用 `@Async` 的代理功能。希望对你有所帮助!欢迎关注我的微信公众号“软件求生”,获取更多技术干货!
31 5
开发故事:一个 @Async 如何搞瘫整个微服务系统
|
2月前
|
消息中间件 Dubbo Java
聊聊单体服务VS微服务系统
聊聊单体服务VS微服务系统
|
2月前
|
运维 Cloud Native Devops
云原生架构的崛起与实践云原生架构是一种通过容器化、微服务和DevOps等技术手段,帮助应用系统实现敏捷部署、弹性扩展和高效运维的技术理念。本文将探讨云原生的概念、核心技术以及其在企业中的应用实践,揭示云原生如何成为现代软件开发和运营的主流方式。##
云原生架构是现代IT领域的一场革命,它依托于容器化、微服务和DevOps等核心技术,旨在解决传统架构在应对复杂业务需求时的不足。通过采用云原生方法,企业可以实现敏捷部署、弹性扩展和高效运维,从而大幅提升开发效率和系统可靠性。本文详细阐述了云原生的核心概念、主要技术和实际应用案例,并探讨了企业在实施云原生过程中的挑战与解决方案。无论是正在转型的传统企业,还是寻求创新的互联网企业,云原生都提供了一条实现高效能、高灵活性和高可靠性的技术路径。 ##
196 3
|
2月前
|
缓存 负载均衡 数据管理
深入探索微服务架构的核心要素与实践策略在当今软件开发领域,微服务架构以其独特的优势和灵活性,已成为众多企业和开发者的首选。本文将深入探讨微服务架构的核心要素,包括服务拆分、通信机制、数据管理等,并结合实际案例分析其在不同场景下的应用策略,旨在为读者提供一套全面、深入的微服务架构实践指南。**
**微服务架构作为软件开发领域的热门话题,正引领着一场技术革新。本文从微服务架构的核心要素出发,详细阐述了服务拆分的原则与方法、通信机制的选择与优化、数据管理的策略与挑战等内容。同时,结合具体案例,分析了微服务架构在不同场景下的应用策略,为读者提供了实用的指导和建议。
|
3月前
|
微服务 API Java
微服务架构大揭秘!Play Framework如何助力构建松耦合系统?一场技术革命即将上演!
【8月更文挑战第31天】互联网技术飞速发展,微服务架构成为企业级应用主流。微服务将单一应用拆分成多个小服务,通过轻量级通信机制交互。高性能Java Web框架Play Framework具备轻量级、易扩展特性,适合构建微服务。本文探讨使用Play Framework构建松耦合微服务系统的方法。Play采用响应式编程模型,支持模块化开发,提供丰富生态系统,便于快速构建功能完善的微服务。
49 0
|
9天前
|
设计模式 Java API
微服务架构演变与架构设计深度解析
【11月更文挑战第14天】在当今的IT行业中,微服务架构已经成为构建大型、复杂系统的重要范式。本文将从微服务架构的背景、业务场景、功能点、底层原理、实战、设计模式等多个方面进行深度解析,并结合京东电商的案例,探讨微服务架构在实际应用中的实施与效果。
48 6
|
9天前
|
设计模式 Java API
微服务架构演变与架构设计深度解析
【11月更文挑战第14天】在当今的IT行业中,微服务架构已经成为构建大型、复杂系统的重要范式。本文将从微服务架构的背景、业务场景、功能点、底层原理、实战、设计模式等多个方面进行深度解析,并结合京东电商的案例,探讨微服务架构在实际应用中的实施与效果。
26 1