经典神经网络 | GoogleNet 论文解析及代码实现

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 经典神经网络 | GoogleNet 论文解析及代码实现

157c14dd29db3565e580133a18c84549.png

论文研究目标


利用赫布理论和多尺度处理直觉设计一种增加深度和宽度的提高内部计算资源利用率的(同时保持了计算预算不变)网络。GoogleNet在ImageNet分类比赛的Top-5错误率降到了6.7%。

创新点


  • 提出Inception模块
  • 使用辅助Loss
  • 全连接层使用简单的平均池化代替

网络主要结构


138a3b3c4fcbfd7718c3122530ac66cd.jpg

图一  网络总体架构

上图为主要包含Inception块+辅助分类器的GoogLeNet结构示意图。

Inception模块


07a80b0b161ebd3a157dad1d465ccf98.jpg

上图为Inception块示意图 (a)为普通的Inception块;(b)为带有1×1卷积的,可以对输入通道降维的Inception块

Inception模块特点


  1. 由Inception基础块组成。
  2. Inception块相当于⼀个有4条线路的⼦⽹络。它通过不同窗口形状的卷积层和最⼤池化层来并⾏抽取信息,并使⽤1×1卷积层减少通道数从而降低模型复杂度。
  3. 可以⾃定义的超参数是每个层的输出通道数,我们以此来控制模型复杂度。

371ac25cc9e41aee3cfd4276d9d52e1c.png

针对同一个输入层,在Inception块中有四条并行的线路,其中前1~3个是1×1卷积层,第4个是一个MaxPooling池化层,这四条线路最后的输出拥有相同的shape和不同的channel通道数。于是,这些输出最后可在channel维度进行合并。例如:28×28×64,28×28×128,28×28×32,28×28×32。通道合并层的shape:28×28×256(64+128+32+32)。

举例分析加入1*1卷积核设计的好处:

假设输入时256个feature map进来,256个feature map输出,假设Inception层只执行3x3的卷积,那么这就需要执行 (256x256) x (3x3) 次乘法(大约589,000次计算操作)。现在Bottleneck layer的思想是先来减少特征的数量,我们首先执行256 -> 64 的1×1卷积,然后在所有Bottleneck layer的分支上对64大小的feature map进行卷积,最后再64 -> 256 1x1卷积。

操作量是:

256×64 × 1×1 = 16,384      64x1x1卷积核对上一层输出卷积计算

64×256 × 3×3= 147456      256x3x3卷积核对1x1卷积输出进行卷积计算

总共约163840,而我们以前有近600,000。减少3倍多的操作。

layer设计


GoogLeNet是作者团队在参加2014大规模视觉挑战赛时送去参加的几种Inception结构的模型之一。该网络设计时考虑了计算效率和实用性,故可以在单个设备上运行推理,对低内存设备比较友好。整个网络使用了9个Inception块,结构排布如表格中所示:

e75f0d3ac974f778069cca2f9569683a.jpg

训练方法


模型训练采用了DistBelief分布式机器学习系统对GoogleNet进行了训练(CPU)。论文表示使用高端GPU,可以在1周内完成模型的训练。训练采用了0.9动量的异步随机梯度下降,固定学习率(每8个迭代学习率降低4%),另外使用各个各个尺寸的图片(数据增强)对于降低过拟合很有用。

总结&实验结果


作者在论文中表示,用现有的dense结构来组合构建出最佳的稀疏结构,是改善计算机视觉神经网络的可行方法。与较浅和较窄的网络结构相比,该方法的优点在于计算量适度增加的情况下显著提高网络效果。在目标检测领域,尽管没有利用上下文和bounding box回归,我们的效果还是很好,进一步表面Inception结构的优越性,未来将在此基础上继续研究更加精细和自动化地方式来创造稀疏结构用以促进各领域的工作。

e1852f18c81e074feff7c9e5e41bb999.png

代码实现如下图的GoogLenet网络


a13c2d65ade5c42e7342d1e598ef0b70.png

构建Inception基本模块

class Inception(nn.Module):
    # c1 - c4为每条线路里的层的输出通道数
    def __init__(self, in_c, c1, c2, c3, c4):
        super(Inception, self).__init__()
        # 线路1,单1 x 1卷积层
        self.p1_1 = nn.Conv2d(in_c, c1, kernel_size=1)
        # 线路2,1 x 1卷积层后接3 x 3卷积层
        self.p2_1 = nn.Conv2d(in_c, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        # 线路3,1 x 1卷积层后接5 x 5卷积层
        self.p3_1 = nn.Conv2d(in_c, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        # 线路4,3 x 3最大池化层后接1 x 1卷积层
        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_c, c4, kernel_size=1)
    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        return torch.cat((p1, p2, p3, p4), dim=1)  # 在通道维上连结输出
总体实现
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
                   nn.Conv2d(64, 192, kernel_size=3, padding=1),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   d2l.GlobalAvgPool2d())
net = nn.Sequential(b1, b2, b3, b4, b5, 
                    d2l.FlattenLayer(), nn.Linear(1024, 10))
net = nn.Sequential(b1, b2, b3, b4, b5, d2l.FlattenLayer(), nn.Linear(1024, 10))
X = torch.rand(1, 1, 96, 96)
for blk in net.children(): 
    X = blk(X)
    print('output shape: ', X.shape)
#batchsize=128
batch_size = 16
# 如出现“out of memory”的报错信息,可减小batch_size或resize
#train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device
目录
打赏
0
0
0
0
6
分享
相关文章
实现一个带有昼夜背景切换的动态时钟:从代码到功能解析
本文介绍了一个使用Python和Tkinter库实现的动态时钟程序,具有昼夜背景切换、指针颜色随机变化及整点和半点报时功能。通过设置不同的背景颜色和随机变换指针颜色,增强视觉吸引力;利用多线程技术确保音频播放不影响主程序运行。该程序结合了Tkinter、Pygame、Pytz等库,提供了一个美观且实用的时间显示工具。欢迎点赞、关注、转发、收藏!
151 94
昇腾 msmodelslim w8a8量化代码解析
msmodelslim w8a8量化算法原理和代码解析
26 5
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
194 7
深入解析图神经网络注意力机制:数学原理与可视化实现
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
128 3
|
29天前
|
Java代码结构解析:类、方法、主函数(1分钟解剖室)
### Java代码结构简介 掌握Java代码结构如同拥有程序世界的建筑蓝图,类、方法和主函数构成“黄金三角”。类是独立的容器,承载成员变量和方法;方法实现特定功能,参数控制输入环境;主函数是程序入口。常见错误包括类名与文件名不匹配、忘记static修饰符和花括号未闭合。通过实战案例学习电商系统、游戏角色控制和物联网设备监控,理解类的作用、方法类型和主函数任务,避免典型错误,逐步提升编程能力。 **脑图速记法**:类如太空站,方法即舱段;main是发射台,static不能换;文件名对仗,括号要成双;参数是坐标,void不返航。
50 5
保单AI识别技术及代码示例解析
车险保单包含基础信息、车辆信息、人员信息、保险条款及特别约定等关键内容。AI识别技术通过OCR、文档结构化解析和数据校验,实现对保单信息的精准提取。然而,版式多样性、信息复杂性、图像质量和法律术语解析是主要挑战。Python代码示例展示了如何使用PaddleOCR进行保单信息抽取,并提出了定制化训练、版式分析等优化方向。典型应用场景包括智能录入、快速核保、理赔自动化等。未来将向多模态融合、自适应学习和跨区域兼容性发展。
基于yolov2和googlenet网络的疲劳驾驶检测算法matlab仿真
本内容展示了基于深度学习的疲劳驾驶检测算法,包括算法运行效果预览(无水印)、Matlab 2022a 软件版本说明、部分核心程序(完整版含中文注释与操作视频)。理论部分详细阐述了疲劳检测原理,通过对比疲劳与正常状态下的特征差异,结合深度学习模型提取驾驶员面部特征变化。具体流程包括数据收集、预处理、模型训练与评估,使用数学公式描述损失函数和推理过程。课题基于 YOLOv2 和 GoogleNet,先用 YOLOv2 定位驾驶员面部区域,再由 GoogleNet 分析特征判断疲劳状态,提供高准确率与鲁棒性的检测方法。
鸿蒙登录页面好看的样式设计-HarmonyOS应用开发实战与ArkTS代码解析【HarmonyOS 5.0(Next)】
鸿蒙登录页面设计展示了 HarmonyOS 5.0(Next)的未来美学理念,结合科技与艺术,为用户带来视觉盛宴。该页面使用 ArkTS 开发,支持个性化定制和无缝智能设备连接。代码解析涵盖了声明式 UI、状态管理、事件处理及路由导航等关键概念,帮助开发者快速上手 HarmonyOS 应用开发。通过这段代码,开发者可以了解如何构建交互式界面并实现跨设备协同工作,推动智能生态的发展。
257 10
鸿蒙登录页面好看的样式设计-HarmonyOS应用开发实战与ArkTS代码解析【HarmonyOS 5.0(Next)】
如何在 Java 代码中使用 JSqlParser 解析复杂的 SQL 语句?
大家好,我是 V 哥。JSqlParser 是一个用于解析 SQL 语句的 Java 库,可将 SQL 解析为 Java 对象树,支持多种 SQL 类型(如 `SELECT`、`INSERT` 等)。它适用于 SQL 分析、修改、生成和验证等场景。通过 Maven 或 Gradle 安装后,可以方便地在 Java 代码中使用。
613 11
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
402 30

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等