RNN:
GRU:
• 重置⻔有助于捕捉时间序列⾥短期的依赖关系;
• 更新⻔有助于捕捉时间序列⾥⻓期的依赖关系。
载入数据集
import os os.listdir('/home/input')#数据集文件夹 import numpy as np import torch from torch import nn, optim import torch.nn.functional as F import sys sys.path.append("../input/") import d2l_jay4504 as d2l device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') (corpus_indices, char_to_idx, idx_to_char, vocab_size) = d2l.load_data_jay_lyrics()
初始化参数
num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size print('will use', device) def get_params(): def _one(shape): ts = torch.tensor(np.random.normal(0, 0.01, size=shape), device=device, dtype=torch.float32) #正态分布 return torch.nn.Parameter(ts, requires_grad=True) def _three(): return (_one((num_inputs, num_hiddens)), _one((num_hiddens, num_hiddens)), torch.nn.Parameter(torch.zeros(num_hiddens, device=device, dtype=torch.float32), requires_grad=True)) W_xz, W_hz, b_z = _three() # 更新门参数 W_xr, W_hr, b_r = _three() # 重置门参数 W_xh, W_hh, b_h = _three() # 候选隐藏状态参数 # 输出层参数 W_hq = _one((num_hiddens, num_outputs)) b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device, dtype=torch.float32), requires_grad=True) return nn.ParameterList([W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]) def init_gru_state(batch_size, num_hiddens, device): #隐藏状态初始化 return (torch.zeros((batch_size, num_hiddens), device=device), )
GRU模型
def gru(inputs, state, params): W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params H, = state outputs = [] for X in inputs: Z = torch.sigmoid(torch.matmul(X, W_xz) + torch.matmul(H, W_hz) + b_z) R = torch.sigmoid(torch.matmul(X, W_xr) + torch.matmul(H, W_hr) + b_r) H_tilda = torch.tanh(torch.matmul(X, W_xh) + R * torch.matmul(H, W_hh) + b_h) H = Z * H + (1 - Z) * H_tilda Y = torch.matmul(H, W_hq) + b_q outputs.append(Y) return outputs, (H,)
训练模型
num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2 pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开'] d2l.train_and_predict_rnn(gru, get_params, init_gru_state, num_hiddens, vocab_size, device, corpus_indices, idx_to_char, char_to_idx, False, num_epochs, num_steps, lr, clipping_theta, batch_size, pred_period, pred_len, prefixes)
简洁实现
num_hiddens=256 num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2 pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开'] lr = 1e-2 # 注意调整学习率 gru_layer = nn.GRU(input_size=vocab_size, hidden_size=num_hiddens) model = d2l.RNNModel(gru_layer, vocab_size).to(device) d2l.train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device, corpus_indices, idx_to_char, char_to_idx, num_epochs, num_steps, lr, clipping_theta, batch_size, pred_period, pred_len, prefixes)
输出:
LSTM
长短期记忆long short-term memory:
遗忘门:控制上一时间步的记忆细胞 输入门:控制当前时间步的输入
输出门:控制从记忆细胞到隐藏状态
记忆细胞:⼀种特殊的隐藏状态的信息的流动
初始化参数
num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size print('will use', device) def get_params(): def _one(shape): ts = torch.tensor(np.random.normal(0, 0.01, size=shape), device=device, dtype=torch.float32) return torch.nn.Parameter(ts, requires_grad=True) def _three(): return (_one((num_inputs, num_hiddens)), _one((num_hiddens, num_hiddens)), torch.nn.Parameter(torch.zeros(num_hiddens, device=device, dtype=torch.float32), requires_grad=True)) W_xi, W_hi, b_i = _three() # 输入门参数 W_xf, W_hf, b_f = _three() # 遗忘门参数 W_xo, W_ho, b_o = _three() # 输出门参数 W_xc, W_hc, b_c = _three() # 候选记忆细胞参数 # 输出层参数 W_hq = _one((num_hiddens, num_outputs)) b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device, dtype=torch.float32), requires_grad=True) return nn.ParameterList([W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q]) def init_lstm_state(batch_size, num_hiddens, device): return (torch.zeros((batch_size, num_hiddens), device=device), torch.zeros((batch_size, num_hiddens), device=device))
LSTM模型
def lstm(inputs, state, params): [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q] = params (H, C) = state outputs = [] for X in inputs: I = torch.sigmoid(torch.matmul(X, W_xi) + torch.matmul(H, W_hi) + b_i) F = torch.sigmoid(torch.matmul(X, W_xf) + torch.matmul(H, W_hf) + b_f) O = torch.sigmoid(torch.matmul(X, W_xo) + torch.matmul(H, W_ho) + b_o) C_tilda = torch.tanh(torch.matmul(X, W_xc) + torch.matmul(H, W_hc) + b_c) C = F * C + I * C_tilda H = O * C.tanh() Y = torch.matmul(H, W_hq) + b_q outputs.append(Y) return outputs, (H, C)
训练模型
num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2 pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开'] d2l.train_and_predict_rnn(lstm, get_params, init_lstm_state, num_hiddens, vocab_size, device, corpus_indices, idx_to_char, char_to_idx, False, num_epochs, num_steps, lr, clipping_theta, batch_size, pred_period, pred_len, prefixes)
输出:
简洁实现
num_hiddens=256 num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2 pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开'] lr = 1e-2 # 注意调整学习率 lstm_layer = nn.LSTM(input_size=vocab_size, hidden_size=num_hiddens) model = d2l.RNNModel(lstm_layer, vocab_size) d2l.train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device, corpus_indices, idx_to_char, char_to_idx, num_epochs, num_steps, lr, clipping_theta, batch_size, pred_period, pred_len, prefixes)
深度循环神经网络
num_hiddens=256 num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2 pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开'] lr = 1e-2 # 注意调整学习率 gru_layer = nn.LSTM(input_size=vocab_size, hidden_size=num_hiddens,num_layers=2) model = d2l.RNNModel(gru_layer, vocab_size).to(device) d2l.train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device, corpus_indices, idx_to_char, char_to_idx, num_epochs, num_steps, lr, clipping_theta, batch_size, pred_period, pred_len, prefixes)
输出:
gru_layer = nn.LSTM(input_size=vocab_size, hidden_size=num_hiddens,num_layers=6) model = d2l.RNNModel(gru_layer, vocab_size).to(device) d2l.train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device, corpus_indices, idx_to_char, char_to_idx, num_epochs, num_steps, lr, clipping_theta, batch_size, pred_period, pred_len, prefixes)
输出:
双向循环神经网络
num_hiddens=128 num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e-2, 1e-2 pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开'] lr = 1e-2 # 注意调整学习率 gru_layer = nn.GRU(input_size=vocab_size, hidden_size=num_hiddens,bidirectional=True) model = d2l.RNNModel(gru_layer, vocab_size).to(device) d2l.train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device, corpus_indices, idx_to_char, char_to_idx, num_epochs, num_steps, lr, clipping_theta, batch_size, pred_period, pred_len, prefixes)
输出:
参考文献
[1]《动手深度学习》李沐
[2]伯禹教育课程