m基于matlab的超宽带MIMO雷达对目标的检测仿真,考虑时间反转

简介: m基于matlab的超宽带MIMO雷达对目标的检测仿真,考虑时间反转

1.算法概述

 (不加时间反转处理)参看框图1:天线阵A发送信号,经过目标场,在接收阵B端接收数据记为Y1,然后对所接收到的信号处理(匹配滤波等处理过程),得到回波的信噪比,目标的位置及成像;用图示表示如下:

1.png

不加时间反转处理的程序,其基本流程图如下所示:

2.png

(加上时间反转处理)在B端接收到信号Y1,对Y1做时间反转处理,能量归一化后再发射出去,经过同样的空间场,然后在A端接收数据记为Y2,对接收到的数据Y2再做处理(匹配滤波等),得到回波的信噪比(与第一步未加时间反转做对比),目标的位置信息及成像。用图示表示如下:

3.png

加时间反转处理的程序,其基本流程图如下所示:

4.png

   发射天线数Nt个,接收天线数Nr个(Nt,Nr可以自由设置或确定设置为某一值,如Nt=2,Nr=3等等),空间中放置检测目标(目标个数可以自定,简化下,目标可看成是点目标),发射端发射信号为超宽带信号(高斯脉冲信号),并且Nt个发射信号为正交信号(即将前面的高斯脉冲信号进行处理,使信号正交),信号经过探测空间后,接收端对回波进行处理,得到空间中目标的位置及成像。

具体步骤:假设收发双方分别为天线阵A和天线阵B

    第一步:(不加时间反转处理)参看框图1:天线阵A发送信号,经过目标场,在接收阵B端接收数据记为Y1,然后对所接收到的信号处理(匹配滤波等处理过程),得到回波的信噪比,目标的位置及成像;

    第二步:(加上时间反转处理)在B端接收到信号Y1,对Y1做时间反转处理,能量归一化后再发射出去,经过同样的空间场,然后在A端接收数据记为Y2,对接收到的数据Y2再做处理(匹配滤波等),得到回波的信噪比(与第一步未加时间反转做对比),目标的位置信息及成像。 

2.仿真效果预览
matlab2022a仿真结果如下:

5.png
6.png
7.png

3.MATLAB部分代码预览

figure;
color = ['b','g','r','k'];
for i   = 1:length(alpha)
    [gt,f]  = func_UWB_gspluse(E0,fc,f1,f2,k,scale,alpha(i));
    tmp     = color(i);
    plot(f,gt,tmp);
    hold on;
    axis([898,902,-0.5,1.2]);
end
title('超宽带高斯脉冲信号');
legend('alpha = 0','alpha = 0.75','alpha = 1.5','alpha = 3');
% clear E0 alpha fc f1 f2 k scale color gt f
%进行传统算法
%下面开始实际的算法
%这里发送天线和接收天线设置为4和1,如果要修改
%%
%参数的初始化
Nt   = 3;
Nr   = 3;
L    = length(gt);
l    = 1:L;
T    = 1/(10^6);
ts   = T/L;
SNR  =-10:1:20;
times= 200;
Pfa  = 10e-5;%虚警概率
%%
%超带宽高斯脉冲信号
[gt,f]  = func_UWB_gspluse(E0,fc,f1,f2,k,scale,alpha(1));
 
%MIMO发送信号
X = func_MIMO_trans(gt,Nt,ts,T);
ind = 0;
for j = 1:length(SNR)
    N0    = 10^(SNR(j)/10);
    count = 0;
    mui   = 1;
    for i = 1:times%利用门特卡罗的设计仿真思想,计算不同信噪比下的检测概率
        ind = ind + 1 
        %通过MIMO信道
        [alpha,H]=func_MIMO_channel(Nt,N0);
        %接收机接收到的信号
        for l=1:L           
            r(:,l)=H*X(:,l);
        end 
        
        %将时间反转的信号通过信道发送回去
        for l=1:L      
            r2(:,l)=H*conj(r(:,l));
        end         
 
        %匹配滤波
        [E,R] = func_match_filter(r2,X,L);
        %目标检测 
        Theta_doa = func_MIMORadar_DOA(E,R);
        %判断是否被检测到
        threshold = 10000;
        if(Theta_doa>threshold)
           detected = 1;
           count    = count + 1;
        else
           p = rand(1,1);
           if p > 1-Pfa    %虚警概率
              detected = 1;
              count    = count + 1;
           else
              detected = 0;
           end
        end
    end
    pc(j) = count/times;
end
toc
figure;
plot(SNR,pc,'b-o');        
xlabel('SNR');
ylabel('Pmd');
grid on;
01_049_m

相关文章
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
2天前
|
机器学习/深度学习 算法 安全
m基于Q-Learning强化学习的路线规划和避障策略matlab仿真
MATLAB 2022a仿真实现了Q-Learning算法在路线规划与避障中的应用,展示了智能体在动态环境中学习最优路径的过程。Q-Learning通过学习动作价值函数Q(s,a)来最大化长期奖励,状态s和动作a分别代表智能体的位置和移动方向。核心程序包括迭代选择最优动作、更新Q矩阵及奖励机制(正奖励鼓励向目标移动,负奖励避开障碍,探索奖励平衡探索与利用)。最终,智能体能在复杂环境中找到安全高效的路径,体现了强化学习在自主导航的潜力。
8 0
|
20小时前
|
算法
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
MATLAB 2022a仿真实现了LDPC码的性能分析,展示了不同码长对纠错能力的影响。短码长LDPC码收敛快但纠错能力有限,长码长则提供更强纠错能力但易陷入局部最优。核心代码通过循环进行误码率仿真,根据EsN0计算误比特率,并保存不同码长(12-768)的结果数据。
19 9
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
|
1天前
|
数据采集 Python
matlab疲劳驾驶检测项目,Python高级面试framework
matlab疲劳驾驶检测项目,Python高级面试framework
|
3天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真
摘要: 本文介绍了使用matlab2022a中优化后的算法,应用于时间序列回归预测,结合CNN、LSTM和Attention机制,提升预测性能。GWO算法用于优化深度学习模型的超参数,模拟灰狼社群行为以求全局最优。算法流程包括CNN提取局部特征,LSTM处理序列依赖,注意力机制聚焦相关历史信息。GWO的灰狼角色划分和迭代策略助力寻找最佳解。
|
4天前
|
算法 计算机视觉
基于高斯混合模型的视频背景提取和人员跟踪算法matlab仿真
该内容是关于使用MATLAB2013B实现基于高斯混合模型(GMM)的视频背景提取和人员跟踪算法。算法通过GMM建立背景模型,新帧与模型比较,提取前景并进行人员跟踪。文章附有程序代码示例,展示从读取视频到结果显示的流程。最后,结果保存在Result.mat文件中。
|
4天前
|
资源调度 算法 块存储
m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
9 1
|
4天前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
4天前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章