俄罗斯世界出口探索性数据分析

简介: 俄罗斯世界出口探索性数据分析

数据集介绍 📋



!python --version
Python 3.7.12
import pandas as pd
import numpy as np
from plotly import express as px
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
convert_dtypes() pandas


  • pandas 默认 读取文本数据时,会自动读成object。
  • 通过convert_dtypes()可以自动读成最新支持的类型,string


image.pngimage.png

dataframe = pd.read_csv('/home/mw/input/Soviet_70yrs4904/RUStoWorldTrade.csv',
usecols=['Year','Aggregate Level','Reporter ISO','Partner','Partner ISO','Commodity Code','Commodity','Qty Unit','Qty','Netweight (kg)','Trade Value (US$)'])
dataframe = dataframe.convert_dtypes()


数据预处理   📋


数据集庞大,包含130万个数据点,因此它具有 650mb的高内存使用率,  我们将使用作者提供的 Starter Code 代码来优化性能。它将把数据类型转换为更小的数据类型,并帮助我们从 五个聚合级别中选择一个  and  并将内存使用率降低95%

Aggregate Level Level Name Code Format Number of Items
1 Section 0 10 Items
2 Division 01 67 Items
3 Group 012 261 Items
4 Subgroup 012.1 1033 Items
5 Item 012.13 3121 Items


info


  • Dataframe对象调用info()会显示DataFrame的内存是哟航情况。
  • memory_usage='deep'将启用更准确的内存使用报告,将更费内存。

通过memory_usage,查看各列内存使用量,然后就可以针对性进行内存优化了。

dataframe.info(memory_usage='deep')
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1384603 entries, 0 to 1384602
Data columns (total 11 columns):
 #   Column             Non-Null Count    Dtype 
---  ------             --------------    ----- 
 0   Year               1384603 non-null  Int64 
 1   Aggregate Level    1384603 non-null  Int64 
 2   Reporter ISO       1384603 non-null  string
 3   Partner            1384603 non-null  string
 4   Partner ISO        1375914 non-null  string
 5   Commodity Code     1384603 non-null  object
 6   Commodity          1384603 non-null  string
 7   Qty Unit           1384603 non-null  string
 8   Qty                1283894 non-null  Int64 
 9   Netweight (kg)     1323567 non-null  Int64 
 10  Trade Value (US$)  1384603 non-null  Int64 
dtypes: Int64(5), object(1), string(5)
memory usage: 638.8 MB
for col in dataframe.columns:
    if dataframe[col].dtype == 'Float64':
        dataframe[col] = dataframe[col].astype('float16')
    try : 
        if dataframe[col].dtype == 'Int64':
            dataframe[col] = dataframe[col].astype('int16')
    except :
        dataframe[col] = dataframe[col].astype('float16')
dataframe.drop(dataframe[dataframe['Commodity Code'] == 'TOTAL'].index, inplace=True)
dataframe['Commodity Code'] = dataframe['Commodity Code'].astype('float16')
dataframe.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1384426 entries, 0 to 1384602
Data columns (total 11 columns):
 #   Column             Non-Null Count    Dtype  
---  ------             --------------    -----  
 0   Year               1384426 non-null  int16  
 1   Aggregate Level    1384426 non-null  int16  
 2   Reporter ISO       1384426 non-null  string 
 3   Partner            1384426 non-null  string 
 4   Partner ISO        1375737 non-null  string 
 5   Commodity Code     1384426 non-null  float16
 6   Commodity          1384426 non-null  string 
 7   Qty Unit           1384426 non-null  string 
 8   Qty                1283826 non-null  float16
 9   Netweight (kg)     1323499 non-null  float16
 10  Trade Value (US$)  1384426 non-null  int16  
dtypes: float16(3), int16(3), string(5)
memory usage: 79.2 MB
df = dataframe[dataframe['Aggregate Level']==2]
iso = pd.read_csv('/home/mw/input/Soviet_70yrs4904/iso3.csv')
iso.drop(axis=1, columns=['FIPS','ISO (2)','ISO (No)','Internet','Note','Capital'], inplace=True)
continents = ['Asia', 'Europe', 'Africa', 'Oceania', 'Americas']
for x in continents:        
    y = iso[iso['Continent'] == x]
    m = df['Partner ISO'].isin(y['ISO (3)'])
    df.loc[m, 'Continent'] = x
Region = ['South Asia', 'South East Europe', 'Northern Africa', 'Pacific',
       'South West Europe', 'Southern Africa', 'West Indies',
       'South America', 'South West Asia', 'Central Europe',
       'Eastern Europe', 'Western Europe', 'Central America',
       'Western Africa', 'South East Asia', 'Central Africa',
       'North America', 'East Asia', 'Indian Ocean', 'Northern Europe',
       'Eastern Africa', 'Southern Europe', 'Central Asia',
       'Northern Asia']
for x in Region:        
    y = iso[iso['Region'] == x]
    m = df['Partner ISO'].isin(y['ISO (3)'])
    df.loc[m, 'Region'] = x

此外,我们将 使用提供的iso3数据集将Continents和SubContinents 添加到数据集中

在我们的操作之后,内存使用量已经减少了95%,降至40mb

df.info(memory_usage='deep')
<class 'pandas.core.frame.DataFrame'>
Int64Index: 79030 entries, 11 to 1384534
Data columns (total 13 columns):
 #   Column             Non-Null Count  Dtype  
---  ------             --------------  -----  
 0   Year               79030 non-null  int16  
 1   Aggregate Level    79030 non-null  int16  
 2   Reporter ISO       79030 non-null  string 
 3   Partner            79030 non-null  string 
 4   Partner ISO        78318 non-null  string 
 5   Commodity Code     79030 non-null  float16
 6   Commodity          79030 non-null  string 
 7   Qty Unit           79030 non-null  string 
 8   Qty                31621 non-null  float16
 9   Netweight (kg)     31556 non-null  float16
 10  Trade Value (US$)  79030 non-null  int16  
 11  Continent          74838 non-null  object 
 12  Region             74838 non-null  object 
dtypes: float16(3), int16(3), object(2), string(5)
memory usage: 38.5 MB


Pandas Profiling 📋


了解数据,使用交互式元素进行浏览 🔬


pandas df.describe() 函数 很强大,但对于严肃的探索性数据分析来说,这是一点基础。 pandas_profiling 用扩展pandad数据帧。profile_report()于快速数据分析。


year_list = [2010,2012,2014,2016,2018,2020]
top_countries_by_year = df[df['Year'].isin(year_list)]
top_countries_by_year = top_countries_by_year[top_countries_by_year['Trade Value (US$)'] >= 0]
top_countries_by_year = top_countries_by_year.groupby(['Year','Partner ISO']).agg({'Trade Value (US$)':'sum'}) ; top_countries_by_year.reset_index(inplace=True)
top_countries_by_year.sort_values(by=['Year','Trade Value (US$)'],ascending=[True,False], inplace=True)
top_countries_by_year = top_countries_by_year.groupby('Year').head(1)


EDA | 探索性数据分析 Exploratory Data Analysis 📊


I. 历年俄罗斯出口贸易价值 📅


俄罗斯总体上能够保持稳定的贸易价值, 贸易额在 5-800万美元的范围内。拥有稳定的贸易 确保了金融安全 并帮助各国公民从各种选择中进行选择。


# 历年交易量
ts = df.groupby(['Year']).agg({'Trade Value (US$)':'sum'}) ; ts.reset_index(inplace=True)
fig = px.area(ts, x='Year', y='Trade Value (US$)', template='plotly_white')
fig.update_layout(font_family="verdana",font_size=12, paper_bgcolor="#e9f1f5",plot_bgcolor="#e9f1f5",title="Volume of Trade over Years<br><sup>Exports by Russia have been in a 'range' for the past years</sup>")
fig.update_yaxes(tickprefix="$", showgrid=False, range = [0,12500000])
fig.add_annotation(text='<b>Housing Crisis', x='2008', y=4200000, arrowhead=1, showarrow=True)
fig.add_shape(
    type='line', line_color='salmon', line_width=1, opacity=1, line_dash='dot',
    x0=2010, y0=0, x1=2010, y1=6053000, xref='x', yref='y') ; fig.add_annotation(text='<b>Germany', x='2010', y=6700000, showarrow=False)
fig.add_shape(
    type='line', line_color='salmon', line_width=1, opacity=1, line_dash='dot',
    x0=2012, y0=0, x1=2012, y1=6354000, xref='x', yref='y') ; fig.add_annotation(text='<b>Lithuania', x='2012', y=7000000, showarrow=False)
fig.add_shape(
    type='line', line_color='salmon', line_width=1, opacity=1, line_dash='dot',
    x0=2014, y0=0, x1=2014, y1=7722400, xref='x', yref='y') ; fig.add_annotation(text='<b>Mongolia', x='2014', y=8200000, showarrow=False)
fig.add_shape(
    type='line', line_color='salmon', line_width=1, opacity=1, line_dash='dot',
    x0=2016, y0=0, x1=2016, y1=8079900, xref='x', yref='y') ; fig.add_annotation(text='<b>Kyrgyzstan', x='2016', y=8500000, showarrow=False)
fig.add_shape(
    type='line', line_color='salmon', line_width=1, opacity=1, line_dash='dot',
    x0=2018, y0=0, x1=2018, y1=6054000, xref='x', yref='y') ; fig.add_annotation(text='<b>China', x='2018', y=6600000, showarrow=False)
fig.add_shape(
    type='line', line_color='black', line_width=1, opacity=1,
    x0=2010, y0=10000000, x1=2018, y1=10000000, xref='x', yref='y') ; fig.add_annotation(text='<b>Top Importers of Goods with respect to Year', x='2014', y=11000000, showarrow=False)
fig.add_shape(type='line', line_color='black', line_width=1, opacity=1,x0=2010, y0=9000000, x1=2010, y1=10000000, xref='x', yref='y')
fig.add_shape(type='line', line_color='black', line_width=1, opacity=1,x0=2018, y0=9000000, x1=2018, y1=10000000, xref='x', yref='y')
fig.add_shape(type='line', line_color='black', line_width=1, opacity=1,x0=2014, y0=10000000, x1=2014, y1=10500000, xref='x', yref='y')
fig.show()
cmap_chem = ['rgb(214,96,77)','#cde3ef','rgb(67,147,195)']
cmap_ec = ['rgb(178,24,43)','#cde3ef','rgb(33,102,172)']
circle_color = ['#67001f','#d6604d', '#9fcce2', '#4393c3','#053061']
# re-import
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline


II. 各大洲贸易出口细目 🗺️


我们可以得出结论,大多数出口都是与邻国或陆地范围内的国家进行的(运输方式不需要海运/空运方式)。世界银行的一项研究表明,全球90%的货物是通过海运运输的。

.: Scale :.

High to Low

🟦   >  🟥


import math
millnames = ['',' K',' M',' B',' Tr']
import circlify
def millify(n):
    n = float(n)
    millidx = max(0,min(len(millnames)-1,
                        int(math.floor(0 if n == 0 else math.log10(abs(n))/3))))
    return '{:.0f}{}'.format(n / 10**(3 * millidx), millnames[millidx])
fig, ax = plt.subplots(figsize=(14,14))
ax.set_facecolor('#e9f1f5')
cc = df.copy()
cc = cc.groupby('Continent').agg({'Trade Value (US$)':'sum'}) ; cc.reset_index(inplace=True)
cc = cc[cc['Trade Value (US$)'] >= 0]
cc.sort_values(by='Trade Value (US$)', inplace=True)
labels = cc['Continent']
circles = circlify.circlify(
    cc['Trade Value (US$)'].tolist(), 
    show_enclosure=False, 
    target_enclosure=circlify.Circle(x=0, y=0, r=1))
lim = max(
    max(
        abs(circle.x) + circle.r,
        abs(circle.y) + circle.r,)
    for circle in circles)
plt.xlim(-lim-0.15, lim+0.15)
plt.ylim(-lim-0.15, lim+0.15)
ax.set(xticklabels=[],yticklabels=[])
# print circles
for circle, label, color, val in zip(circles, labels, circle_color,cc['Trade Value (US$)']) :
    x, y, r = circle
    ax.add_patch(plt.Circle((x, y),  r,alpha=0.9, linewidth=1, facecolor=color, edgecolor='black',))
    plt.annotate(label, (x,y ) ,va='center', ha='center',color='white', fontsize=12)# bbox=dict(facecolor='white', edgecolor='black', boxstyle='round', pad=.5))
    plt.annotate(millify(val), (x,y-0.04 ) ,va='center', ha='center',color='white', fontsize=10)
    plt.annotate('Minimum Imports', xy=(0.7,0.55), xytext=(0.85, 0.8),arrowprops=dict(arrowstyle="-[", connectionstyle="angle3,angleA=90,angleB=0"))
    plt.annotate('Maximum Imports', xy=(0.55,-0.54), xytext=(0.75, -0.75),arrowprops=dict(arrowstyle="-[",connectionstyle="angle3,angleA=180,angleB=90"))
    plt.annotate('Average Imports', xy=(-0.40,0.65), xytext=(-0.70, 0.85),arrowprops=dict(arrowstyle="-[",connectionstyle="angle3,angleA=90,angleB=180"))

image.png

total = df.copy()
total = total.groupby(['Continent','Partner ISO']).agg({'Trade Value (US$)':'sum'}) ; total.reset_index(inplace=True)
total = total.sort_values(by='Trade Value (US$)', ascending=False) ; total = total[total['Trade Value (US$)'] >= 0]
top5 = total.head(6)
top5 = top5['Partner ISO']


III. 按大陆和国家划分的贸易细分 🌎


下面的地图显示了迄今为止每个国家、每个大陆的总出口量。.: Scale :.

High to Low

🟦   >  🟥


# Tree map
fig = px.treemap(total, path=[px.Constant('World'), 'Continent', 'Partner ISO'], values='Trade Value (US$)', color='Trade Value (US$)', hover_data=['Partner ISO'],
                  color_continuous_scale='RdBu',color_continuous_midpoint=np.percentile(total['Trade Value (US$)'],85), template='plotly_white')
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
fig.show()


V. 所有商品的贸易密度|商品代码的核心密度w/ref贸易价值  


在100种二级聚合商品中,最常交易的商品介于 40 到 80之间

**化学品-医药产品-钢铁-机械-道路车辆 **商品的主要贡献

# 所有商品的KDE
tt = df.copy()
tt = tt.groupby(['Commodity Code',]).agg({'Trade Value (US$)':'sum'}) ; tt.reset_index(inplace=True)
sns.jointplot(data=tt, x='Commodity Code', y='Trade Value (US$)', kind='kde',  cmap='Blues', shade=True, thresh=0, height=10, fill=True)
<seaborn.axisgrid.JointGrid at 0x7f6c50f7ff90>

image.png


VI. Top-5 商品贸易密度


     table, th, td {   border:1px solid black; }    

国家 最高
印度 鞋类
美国 饮料
中国 染色、鞣制和着色材料
日本 专业机械
沙特阿拉伯 专业机械
德国 专业机械

top_com = df.copy() ; tc = top_com
top_com = top_com.groupby(['Commodity Code']).agg({'Trade Value (US$)':'sum'}) ; top_com.reset_index(inplace=True)
top_com.sort_values(by='Trade Value (US$)', inplace=True, ascending=False)
top_com = top_com['Commodity Code'].head(5)
fig, ax = plt.subplots(3,2,figsize=(18,17))
countries = ['IND','USA','CHN','JPN','SAU','DEU']
f6_pallet = ['#67001f','#d6604d', '#9fcce2', '#4393c3','#053061']
fig.suptitle('Density of Top-5 Commodities amongst different Countries')
labels=['Footwear','Beverages','Dyeing, Tanning and Coloring meterials','Specialized Machinery','Telco,Sound recording/reproducing Equipment']
fig.patch.set_facecolor('#e9f1f5')
count = 0
for i in range(3):
    for j in range(2):
        f6 = df[(df['Partner ISO'] == countries[count]) & (df['Commodity Code'].isin(top_com))]
        f6 = f6.groupby(['Year','Commodity Code']).agg({'Trade Value (US$)':'sum'}) ;f6.reset_index(inplace=True)
        a = sns.kdeplot(data=f6, ax=ax[i,j], x='Trade Value (US$)', hue='Commodity Code', fill=True, alpha=0.4, palette = f6_pallet, legend=False,)
        a.set(xticklabels=[],yticklabels=[])
        ax[i,j].set_title(countries[count]) ; count = count + 1
fig.legend([ax], labels=labels, loc='upper left', ncol=5, mode='expand',borderaxespad=4,)
<matplotlib.legend.Legend at 0x7f6c4f2f99d0>

image.png


热门商品的顶级进口商


VII (A) 前10个有机化学品进口国 🧪 & 医药原料 💊 💉


Top 10 国家 平均进口 80,000 USD全世界的总平均进口价值约为2000美元

five = df[df['Commodity Code'].isin([51,52, 54])] ; f2 = five
five = five.groupby(['Partner ISO']).agg({'Trade Value (US$)':'sum'}) ; five.reset_index(inplace=True)
po = five.sort_values(by='Trade Value (US$)', ascending=False).head(10)
po = po['Partner ISO']
f2 = f2[f2['Partner ISO'].isin(po)]
f2 = f2.groupby(['Partner ISO','Commodity Code']).agg({'Trade Value (US$)':'sum'}) ; f2.reset_index(inplace=True)
avg = np.mean(f2['Trade Value (US$)'])
fig = px.histogram(f2, x='Partner ISO', y='Trade Value (US$)', barmode='group', color='Commodity Code', text_auto='Trade Value (US$)',template='plotly_white',  color_discrete_sequence=cmap_chem)
fig.update_traces(textposition='outside')
fig.update_yaxes(tickprefix="$", showgrid=True)
fig.update_layout(font_family="verdana",font_size=12,paper_bgcolor="#e9f1f5",plot_bgcolor="#e9f1f5",
                    title='Top 10 Countries importing Organic, In-Organic & Pharmaceutical materials <br><sup>Mean import value of $80,000'
                    +' | Highest Importers of Organic and In-Organic chemicals - Pharmaceuticals</sup>')
fig.update_layout(uniformtext_minsize=5, uniformtext_mode='hide', showlegend=False)
fig.add_shape(
    type='line', line_color='salmon', line_width=1, opacity=1, line_dash='dot',
    x0=0, x1=1, xref='paper', y0=avg, y1=avg, yref='y')
fig.add_annotation(text='<i>avg '+str(avg)[:2]+'k', x='AGO', y=80000,)
fig.add_annotation(text='Pharmaceuticals', x='YEM', y=174000, arrowhead=1, showarrow=True)
fig.add_annotation(text='Organic Chemicals', x='DOM', y=160000, arrowhead=1, showarrow=True)
fig.add_annotation(text='In-organic Chemicals', x='LBN', y=135000, arrowhead=1, showarrow=True)
fig.update_layout(yaxis_range=[0,250000],
    xaxis = dict(
        tickmode = 'array',
        tickvals = ['AGO','ARE','CHE','DOM','EGY','GTM','IRN','LBN','SGP','YEM'],
        ticktext = ['Angola','United Arab Emirates','Switzerland','Dominican Republic','Egypt','Guatemala','Iran','Lebanon','Singapore','Yemen']))
fig.show()


VII (B) 电能  🔌 💡


哈萨克斯坦 and 中国 一直是俄罗斯电力的最高进口国



# 35  ELECTRIC CURRENT
ec = df[df['Commodity Code'].isin([35])]
ec = ec.groupby(['Partner ISO']).agg({'Trade Value (US$)':'sum'}) ; ec.reset_index(inplace=True)
fig = px.bar(ec, y='Partner ISO', x='Trade Value (US$)', text='Trade Value (US$)',template='plotly_white',color_continuous_scale=cmap_ec, color='Trade Value (US$)')
fig.update_traces(texttemplate='%{text:.2s}', textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide',xaxis_range=[-95000,100000],)
fig.update_layout(font_family="verdana",font_size=12,paper_bgcolor="#e9f1f5",plot_bgcolor="#e9f1f5",
                    title='Top Importers of electricity<br><sup>Majority of the trade is being done with neighbouring countries and Islands | </sup>')
fig.add_annotation(text='Highest Importer of Electric Current', x=70000, y='LTU', arrowhead=1, showarrow=True)
fig.add_annotation(text='Lowest Importer of Electric Current', x=13000, y='MNG', arrowhead=1, showarrow=False)
fig.add_shape(
    type='line', line_color='salmon', line_width=1, opacity=1, line_dash='dot',
    x0=36650, x1=36650, xref='x', y0='AZE', y1='UKR', yref='y', )
fig.add_annotation(text='mean 36K', x='42000', y='FIN',showarrow=False)
fig.show()


世界范围分布 🗺️


世界地图上俄罗斯流行商品的分布


  1. 衣服 👚 👓
  2. 能源 ⛽ 🛢️
  3. 饮品 🍺 ☕ 🍾

# 83  TRAVEL GOODS, HANDBAGS AND SIMILAR CONTAINERS
# 84  ARTICLES OF APPAREL AND CLOTHING ACCESSORIES
# 85  FOOTWEAR
one = df[df['Commodity Code'].isin([83,84,85])]
one = one.groupby(['Partner ISO']).agg({'Trade Value (US$)':'sum'}) ; one.reset_index(inplace=True)
# 32  COAL, COKE AND BRIQUETTES
# 33  PETROLEUM, PETROLEUM PRODUCTS AND RELATED MATERIALS
# 34  GAS, NATURAL AND MANUFACTURED
two = df[df['Commodity Code'].isin([32,33,34])]
two = two.groupby(['Partner ISO']).agg({'Trade Value (US$)':'sum'}) ; two.reset_index(inplace=True)
# 11  BEVERAGES
# 12  TOBACCO AND TOBACCO MANUFACTURES
three = df[df['Commodity Code'].isin([11,12])]
three = three.groupby(['Partner ISO']).agg({'Trade Value (US$)':'sum'}) ; three.reset_index(inplace=True)
Title = ['Top Importers of Fashionable Threads & Apparel<br><sup>Travel Goods, Footwear, Clothing apparel</sup>',
        'Top Importers of Energy materials<br><sup>Coal, Briquettes, Gas, Fuel</sup>',
        'Top Importers of Beverages<br><sup>Beverages, Tobacco, Tobacco manufactures</sup>',]
for x,y in zip([one,two,three],Title) :
    fig = px.choropleth(x,locations='Partner ISO', locationmode='ISO-3',color='Trade Value (US$)', color_continuous_scale='RdBu', color_continuous_midpoint=np.average(x['Trade Value (US$)']))
    fig.update_layout(font_family="verdana",font_size=12,title=y,paper_bgcolor="#e9f1f5",plot_bgcolor="#e9f1f5")
    fig.update_layout(
    autosize=False,
    width=1200,
    height=600,
    template= 'plotly',
) ; fig.show()


结论 🔎


  • 对于有机/非有机化学品🧪 & 医药原料💊 💉, 前10个国家的平均进口价值为80000美元,而全球的总体平均进口价值约为2000美元
  • 正在交易的前5种贵重商品的KDE密度表明,世界对俄罗斯的专用机械有着浓厚的兴趣
  • 在100种二级综合商品中,最常交易的商品在40至80种之间,主要是化学品-医药产品-钢铁-机械-道路车辆商品
  • 俄罗斯最大的货物进口国位于同一大陆,即亚洲。最高的是朝鲜,其次是新西兰和肯尼亚
  • 我们可以得出结论,大多数出口都是与邻国或陆地范围内的国家进行的(运输方式不需要海运/空运方式)。世界银行的一项研究表明,全球90%的货物是俄罗斯,俄罗斯能够保持总体稳定的贸易价值,贸易额一直在500万至800万美元之间。拥有稳定的贸易可以确保金融安全,并帮助各国公民从各种选择中进行选择。
  • 哈萨克斯坦和中国是俄罗斯电力的最大进口国


目录
相关文章
|
6月前
|
数据可视化 前端开发 数据挖掘
R语言对综合社会调查GSS数据进行自举法bootstrap统计推断、假设检验、探索性数据分析可视化|数据分享(上)
R语言对综合社会调查GSS数据进行自举法bootstrap统计推断、假设检验、探索性数据分析可视化|数据分享
|
6月前
|
数据可视化 算法 数据挖掘
探索Python在数据分析中的应用
在这篇文章中,我们将深入探讨Python语言在数据分析领域的强大应用。Python,作为一门简洁、易学且功能强大的编程语言,已经成为数据科学家和分析师的首选工具之一。本文不仅会介绍Python在数据处理、清洗、分析和可视化方面的关键库,如Pandas、NumPy、Matplotlib和Seaborn,而且还会通过实际案例展示这些库如何被用于解决实际问题。我们的目标是为读者提供一个清晰的指南,帮助他们理解Python在数据分析中的潜力,并鼓励他们开始自己的数据分析项目。
|
6月前
|
机器学习/深度学习 数据可视化 数据挖掘
时间序列预测:探索性数据分析和特征工程的实用指南
时间序列分析在数据科学和机器学习中广泛应用于预测,如金融、能源消耗和销售。随着技术发展,除了传统统计模型,机器学习(如树模型)和深度学习(如LSTM、CNN和Transformer)也被应用。探索性数据分析(EDA)是预处理关键步骤,它通过Pandas、Seaborn和Statsmodel等Python库进行。本文展示了时间序列分析模板,包括描述性统计、时间图、季节图、箱形图、时间序列分解和滞后分析。使用Kaggle的小时能耗数据集,展示了如何通过这些方法揭示数据模式、季节性和趋势,为特征工程提供见解。
103 3
|
6月前
|
前端开发 数据可视化 数据挖掘
R语言对综合社会调查GSS数据进行自举法bootstrap统计推断、假设检验、探索性数据分析可视化|数据分享(下)
R语言对综合社会调查GSS数据进行自举法bootstrap统计推断、假设检验、探索性数据分析可视化|数据分享
|
6月前
|
数据采集 机器学习/深度学习 数据可视化
探索性数据分析
探索性数据分析
78 1
|
6月前
|
数据采集 数据可视化 数据挖掘
探索Python在数据分析中的应用
在当今数据驱动的时代,Python已经成为了数据分析不可或缺的工具之一。本文将深入探讨Python在数据分析领域的应用,从其丰富的数据处理库到强大的数据可视化工具,展示如何利用Python进行高效、深入的数据分析。我们将通过实际案例,指导读者如何使用Python进行数据预处理、分析及呈现,旨在为数据分析师和Python爱好者提供一个全面而深入的学习资源。
|
6月前
|
机器学习/深度学习 数据采集 数据可视化
探索Python在数据分析中的应用
本文将深入剖析Python语言在数据分析领域的强大应用,通过实际案例展示如何利用Python处理、分析数据,并提取有价值的信息。不同于传统的摘要,我们将从Python的简洁语法、丰富的数据分析库(如Pandas、NumPy、Matplotlib)入手,探讨其在数据预处理、分析及可视化方面的优势。文章还将讨论Python与其他数据分析工具的比较,旨在为读者提供一个全面、深入的理解,帮助他们认识到Python在数据科学中不可替代的地位。
|
6月前
|
机器学习/深度学习 数据可视化 数据挖掘
探索Python在数据分析中的应用
本文深入探讨了Python语言在数据分析领域的广泛应用,通过实例展示了如何利用Python处理、分析和可视化数据。不同于传统的技术文章摘要,我们将带您一步步了解Python在数据处理过程中的独特优势,包括其丰富的库支持(如Pandas、NumPy和Matplotlib)、易于学习的语法以及强大的社区支持。文章还将介绍一些高效的数据分析技巧和最佳实践,旨在为读者提供一个清晰的指南,帮助他们充分利用Python进行数据分析,从而在数据驱动的世界中做出更加明智的决策。
35 2
|
6月前
|
机器学习/深度学习 数据可视化 数据处理
深入浅出:Python中的异步编程探索Python在数据分析中的应用
在当今高速发展的互联网时代,异步编程已成为提升应用性能和响应速度的关键技术之一。本文旨在深入浅出地介绍Python中的异步编程概念、原理及其实践应用。通过对比同步与异步编程的不同,解析asyncio库的核心机制,并结合实例演示如何在Python项目中有效实现异步编程,本文希望能够帮助读者更好地理解异步编程的魅力,以及如何在自己的项目中运用这一强大的编程范式。 在当今数据驱动的时代,Python已经成为数据科学家和分析师的首选语言之一。本文将深入探讨Python在数据分析领域的实际应用,包括其在数据处理、可视化以及机器学习中的作用。我们将通过实例,展示如何利用Python的强大库(如Pand
39 2
|
6月前
|
数据可视化 数据挖掘 数据处理
探索Python在数据分析中的应用
在这篇文章中,我们将深入探讨Python语言在数据分析领域的强大应用。Python,作为一种高级编程语言,以其简洁的语法、强大的库支持以及广泛的社区资源,成为了数据科学家和分析师的首选工具。本文不仅会介绍Python在数据处理、清洗、可视化以及模型构建中的关键角色,还会通过实际案例,展示如何运用Python解决复杂的数据分析问题。此外,我们将提供一系列高效的技巧和最佳实践,帮助读者提升使用Python进行数据分析的效率和效果。