PyTorch进阶训练技巧

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: PyTorch进阶训练技巧

1.自定义损失函数


1.1 以函数方式定义


事实上,损失函数仅仅是一个函数而已,因此我们可以通过直接以函数定义的方式定义一个自己的函数,如下所示:

def my_loss(output, target):
    loss = torch.mean((output - target)**2)
    return loss


1.2 以类方式定义


虽然以函数定义的方式很简单,但是以类方式定义更加常用,在以类方式定义损失函数时,我们如果看每一个损失函数的继承关系我们就可以发现Loss函数部分继承自_loss, 部分继承自_WeightedLoss, 而_WeightedLoss继承自_loss _loss继承自 nn.Module。我们可以将其当作神经网络的一层来对待,同样地,我们的损失函数类就需要继承自nn.Module类,在下面的例子中我们以DiceLoss为例向大家讲述。

Dice Loss是一种在分割领域常见的损失函数,定义如下:

DSC=2∣X∩Y∣∣X∣+∣Y∣DSC = \frac{2|X∩Y|}{|X|+|Y|}DSC=X+Y2XY

实现代码如下:

class DiceLoss(nn.Module):
    def __init__(self,weight=None,size_average=True):
        super(DiceLoss,self).__init__()
    def forward(self,inputs,targets,smooth=1):
        inputs = F.sigmoid(inputs)       
        inputs = inputs.view(-1)
        targets = targets.view(-1)
        intersection = (inputs * targets).sum()                   
        dice = (2.*intersection + smooth)/(inputs.sum() + targets.sum() + smooth)  
        return 1 - dice
# 使用方法    
criterion = DiceLoss()
loss = criterion(input,targets)


2 动态调整学习率


学习率的选择是深度学习中一个困扰人们许久的问题,学习速率设置过小,会极大降低收敛速度,增加训练时间;学习率太大,可能导致参数在最优解两侧来回振荡。但是当我们选定了一个合适的学习率后,经过许多轮的训练后,可能会出现准确率震荡或loss不再下降等情况,说明当前学习率已不能满足模型调优的需求。此时我们就可以通过一个适当的学习率衰减策略来改善这种现象,提高我们的精度。这种设置方式在PyTorch中被称为scheduler,也是我们本节所研究的对象。


经过本节的学习,你将收获:

  • 如何根据需要选取已有的学习率调整策略
  • 如何自定义设置学习调整策略并实现


2.1 使用官方scheduler


  • 了解官方提供的API

在训练神经网络的过程中,学习率是最重要的超参数之一,作为当前较为流行的深度学习框架,PyTorch已经在torch.optim.lr_scheduler为我们封装好了一些动态调整学习率的方法供我们使用,如下面列出的这些scheduler。

关于如何使用这些动态调整学习率的策略,PyTorch官方也很人性化的给出了使用实例代码帮助大家理解,我们也将结合官方给出的代码来进行解释。

# 选择一种优化器
optimizer = torch.optim.Adam(...) 
# 选择上面提到的一种或多种动态调整学习率的方法
scheduler1 = torch.optim.lr_scheduler.... 
scheduler2 = torch.optim.lr_scheduler....
...
schedulern = torch.optim.lr_scheduler....
# 进行训练
for epoch in range(100):
    train(...)
    validate(...)
    optimizer.step()
    # 需要在优化器参数更新之后再动态调整学习率
    scheduler1.step() 
  ...
    schedulern.step()

我们在使用官方给出的torch.optim.lr_scheduler时,需要将scheduler.step()放在optimizer.step()后面进行使用。


2.2 自定义scheduler


虽然PyTorch官方给我们提供了许多的API,但是在实验中也有可能碰到需要我们自己定义学习率调整策略的情况,而我们的方法是自定义函数adjust_learning_rate来改变param_grouplr的值,在下面的叙述中会给出一个简单的实现。

假设我们现在正在做实验,需要学习率每30轮下降为原来的1/10,假设已有的官方API中没有符合我们需求的,那就需要自定义函数来实现学习率的改变。

def adjust_learning_rate(optimizer, epoch):
    lr = args.lr * (0.1 ** (epoch // 30))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

有了adjust_learning_rate函数的定义,在训练的过程就可以调用我们的函数来实现学习率的动态变化

def adjust_learning_rate(optimizer,...):
    ...
optimizer = torch.optim.SGD(model.parameters(),lr = args.lr,momentum = 0.9)
for epoch in range(10):
    train(...)
    validate(...)
    adjust_learning_rate(optimizer,epoch)


3 模型微调 - timm


除了使用torchvision.models进行预训练以外,还有一个常见的预训练模型库,叫做timm,这个库是由来自加拿大温哥华Ross Wightman创建的。里面提供了许多计算机视觉的SOTA模型,可以当作是torchvision的扩充版本,并且里面的模型在准确度上也较高。在本章内容中,我们主要是针对这个库的预训练模型的使用做叙述,其他部分内容(数据扩增,优化器等)如果大家感兴趣,可以参考以下两个链接。


3.1使用和修改预训练模型


在得到我们想要使用的预训练模型后,我们可以通过timm.create_model()的方法来进行模型的创建,我们可以通过传入参数pretrained=True,来使用预训练模型。同样的,我们也可以使用跟torchvision里面的模型一样的方法查看模型的参数,类型/

import timm
import torch
model = timm.create_model('resnet34',pretrained=True)
x = torch.randn(1,3,224,224)
output = model(x)
output.shape
torch.Size([1, 1000])
  • 查看某一层模型参数(以第一层卷积为例)
model = timm.create_model('resnet34',pretrained=True)
list(dict(model.named_children())['conv1'].parameters())
[Parameter containing:
 tensor([[[[-2.9398e-02, -3.6421e-02, -2.8832e-02,  ..., -1.8349e-02,
            -6.9210e-03,  1.2127e-02],
           [-3.6199e-02, -6.0810e-02, -5.3891e-02,  ..., -4.2744e-02,
            -7.3169e-03, -1.1834e-02],
            ...
           [ 8.4563e-03, -1.7099e-02, -1.2176e-03,  ...,  7.0081e-02,
             2.9756e-02, -4.1400e-03]]]], requires_grad=True)]
  • 修改模型(将1000类改为10类输出)
model = timm.create_model('resnet34',num_classes=10,pretrained=True)
x = torch.randn(1,3,224,224)
output = model(x)
output.shape
torch.Size([1, 10])
  • 改变输入通道数(比如我们传入的图片是单通道的,但是模型需要的是三通道图片) 我们可以通过添加in_chans=1来改变
model = timm.create_model('resnet34',num_classes=10,pretrained=True,in_chans=1)
x = torch.randn(1,1,224,224)
output = model(x)


3.2模型的保存


timm库所创建的模型是torch.model的子类,我们可以直接使用torch库中内置的模型参数保存和加载的方法,具体操作如下方代码所示

torch.save(model.state_dict(),'./checkpoint/timm_model.pth')
model.load_state_dict(torch.load('./checkpoint/timm_model.pth'))


4.模型微调-torchvision


随着深度学习的发展,模型的参数越来越大,许多开源模型都是在较大数据集上进行训练的,比如Imagenet-1k,Imagenet-11k,甚至是ImageNet-21k等。但在实际应用中,我们的数据集可能只有几千张,这时从头开始训练具有几千万参数的大型神经网络是不现实的,因为越大的模型对数据量的要求越大,过拟合无法避免。

  • 实例化网络 import torchvision.models as models resnet18 = models.resnet18() # resnet18 = models.resnet18(pretrained=False)  等价于与上面的表达式 alexnet = models.alexnet() vgg16 = models.vgg16() squeezenet = models.squeezenet1_0() densenet = models.densenet161() inception = models.inception_v3() googlenet = models.googlenet() shufflenet = models.shufflenet_v2_x1_0() mobilenet_v2 = models.mobilenet_v2() mobilenet_v3_large = models.mobilenet_v3_large() mobilenet_v3_small = models.mobilenet_v3_small() resnext50_32x4d = models.resnext50_32x4d() wide_resnet50_2 = models.wide_resnet50_2() mnasnet = models.mnasnet1_0()
  • 传递pretrained参数

通过True或者False来决定是否使用预训练好的权重,在默认状态下pretrained = False,意味着我们不使用预训练得到的权重,当pretrained = True,意味着我们将使用在一些数据集上预训练得到的权重。

import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True)
googlenet = models.googlenet(pretrained=True)
shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
mobilenet_v2 = models.mobilenet_v2(pretrained=True)
mobilenet_v3_large = models.mobilenet_v3_large(pretrained=True)
mobilenet_v3_small = models.mobilenet_v3_small(pretrained=True)
resnext50_32x4d = models.resnext50_32x4d(pretrained=True)
wide_resnet50_2 = models.wide_resnet50_2(pretrained=True)
mnasnet = models.mnasnet1_0(pretrained=True)

注意事项:

  1. 通常PyTorch模型的扩展为.pt或.pth,程序运行时会首先检查默认路径中是否有已经下载的模型权重,一旦权重被下载,下次加载就不需要下载了。
  2. 一般情况下预训练模型的下载会比较慢,我们可以直接通过迅雷或者其他方式去 这里 查看自己的模型里面model_urls,然后手动下载,预训练模型的权重在Linux和Mac的默认下载路径是用户根目录下的.cache文件夹。在Windows下就是C:\Users<username>.cache\torch\hub\checkpoint。我们可以通过使用 torch.utils.model_zoo.load_url()设置权重的下载地址。
  3. 如果觉得麻烦,还可以将自己的权重下载下来放到同文件夹下,然后再将参数加载网络。 self.model = models.resnet50(pretrained=False) self.model.load_state_dict(torch.load('./model/resnet50-19c8e357.pth'))
  4. 如果中途强行停止下载的话,一定要去对应路径下将权重文件删除干净,要不然可能会报错。

6.3.3 训练特定层

在默认情况下,参数的属性.requires_grad = True,如果我们从头开始训练或微调不需要注意这里。但如果我们正在提取特征并且只想为新初始化的层计算梯度,其他参数不进行改变。那我们就需要通过设置requires_grad = False来冻结部分层。在PyTorch官方中提供了这样一个例程。

def set_parameter_requires_grad(model, feature_extracting):
    if feature_extracting:
        for param in model.parameters():
            param.requires_grad = False

在下面我们仍旧使用resnet18为例的将1000类改为4类,但是仅改变最后一层的模型参数,不改变特征提取的模型参数;注意我们先冻结模型参数的梯度,再对模型输出部分的全连接层进行修改,这样修改后的全连接层的参数就是可计算梯度的。

import torchvision.models as models
# 冻结参数的梯度
feature_extract = True
model = models.resnet18(pretrained=True)
set_parameter_requires_grad(model, feature_extract)
# 修改模型
num_ftrs = model.fc.in_features
model.fc = nn.Linear(in_features=num_ftrs, out_features=4, bias=True)

之后在训练过程中,model仍会进行梯度回传,但是参数更新则只会发生在fc层。通过设定参数的requires_grad属性,我们完成了指定训练模型的特定层的目标,这对实现模型微调非常重要。


5.半精度训练


我们提到PyTorch时候,总会想到要用硬件设备GPU的支持,也就是“卡”。GPU的性能主要分为两部分:算力和显存,前者决定了显卡计算的速度,后者则决定了显卡可以同时放入多少数据用于计算。在可以使用的显存数量一定的情况下,每次训练能够加载的数据更多(也就是batch size更大),则也可以提高训练效率。另外,有时候数据本身也比较大(比如3D图像、视频等),显存较小的情况下可能甚至batch size为1的情况都无法实现。因此,合理使用显存也就显得十分重要。


们观察PyTorch默认的浮点数存储方式用的是torch.float32,小数点后位数更多固然能保证数据的精确性,但绝大多数场景其实并不需要这么精确,只保留一半的信息也不会影响结果,也就是使用torch.float16格式。由于数位减了一半,因此被称为“半精度”。

在PyTorch中使用autocast配置半精度训练,同时需要在下面三处加以设置:

  • import autocast
from torch.cuda.amp import autocast
  • 模型设置

在模型定义中,使用python的装饰器方法,用autocast装饰模型中的forward函数。关于装饰器的使用,可以参考这里

@autocast()   
def forward(self, x):
    ...
    return x
  • 训练过程

在训练过程中,只需在将数据输入模型及其之后的部分放入“with autocast():“即可:

for x in train_loader:
  x = x.cuda()
  with autocast():
            output = model(x)
        ...


6.数据增强


  • imgaug的简介和安装
  • 使用imgaug对数据进行增强


imgaug在PyTorch的应用


关于PyTorch中如何使用imgaug每一个人的模板是不一样的,我在这里也仅仅给出imgaug的issue里面提出的一种解决方案,大家可以根据自己的实际需求进行改变。 具体链接:how to use imgaug with pytorch

import numpy as np
from imgaug import augmenters as iaa
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
# 构建pipline
tfs = transforms.Compose([
    iaa.Sequential([
        iaa.flip.Fliplr(p=0.5),
        iaa.flip.Flipud(p=0.5),
        iaa.GaussianBlur(sigma=(0.0, 0.1)),
        iaa.MultiplyBrightness(mul=(0.65, 1.35)),
    ]).augment_image,
    # 不要忘记了使用ToTensor()
    transforms.ToTensor()
])
# 自定义数据集
class CustomDataset(Dataset):
    def __init__(self, n_images, n_classes, transform=None):
    # 图片的读取,建议使用imageio
        self.images = np.random.randint(0, 255,
                                        (n_images, 224, 224, 3),
                                        dtype=np.uint8)
        self.targets = np.random.randn(n_images, n_classes)
        self.transform = transform
    def __getitem__(self, item):
        image = self.images[item]
        target = self.targets[item]
        if self.transform:
            image = self.transform(image)
        return image, target
    def __len__(self):
        return len(self.images)
def worker_init_fn(worker_id):
    imgaug.seed(np.random.get_state()[1][0] + worker_id)
custom_ds = CustomDataset(n_images=50, n_classes=10, transform=tfs)
custom_dl = DataLoader(custom_ds, batch_size=64,
                       num_workers=4, pin_memory=True, 
                       worker_init_fn=worker_init_fn)

关于num_workers在Windows系统上只能设置成0,但是当我们使用Linux远程服务器时,可能使用不同的num_workers的数量,这是我们就需要注意worker_init_fn()函数的作用了。它保证了我们使用的数据增强在num_workers>0时是对数据的增强是随机的。


7. 使用argparse进行调参


在深度学习中时,超参数的修改和保存是非常重要的一步,尤其是当我们在服务器上跑我们的模型时,如何更方便的修改超参数是我们需要考虑的一个问题。这时候,要是有一个库或者函数可以解析我们输入的命令行参数再传入模型的超参数中该多好。到底有没有这样的一种方法呢?答案是肯定的,这个就是 Python 标准库的一部分:Argparse。那么下面让我们看看他是多么方便。通过本节课,您将会收获以下内容

  • argparse的简介
  • argparse的使用
  • 如何使用argparse修改超参数


7.1 argparse简介


argsparse是python的命令行解析的标准模块,内置于python,不需要安装。这个库可以让我们直接在命令行中就可以向程序中传入参数。我们可以使用python file.py来运行python文件。而argparse的作用就是将命令行传入的其他参数进行解析、保存和使用。在使用argparse后,我们在命令行输入的参数就可以以这种形式python file.py --lr 1e-4 --batch_size 32来完成对常见超参数的设置。


7.2 argparse的使用


总的来说,我们可以将argparse的使用归纳为以下三个步骤。

  • 创建ArgumentParser()对象
  • 调用add_argument()方法添加参数
  • 使用parse_args()解析参数 在接下来的内容中,我们将以实际操作来学习argparse的使用方法。
# demo.py
import argparse
# 创建ArgumentParser()对象
parser = argparse.ArgumentParser()
# 添加参数
parser.add_argument('-o', '--output', action='store_true', 
    help="shows output")
# action = `store_true` 会将output参数记录为True
# type 规定了参数的格式
# default 规定了默认值
parser.add_argument('--lr', type=float, default=3e-5, help='select the learning rate, default=1e-3') 
parser.add_argument('--batch_size', type=int, required=True, help='input batch size')  
# 使用parse_args()解析函数
args = parser.parse_args()
if args.output:
    print("This is some output")
    print(f"learning rate:{args.lr} ")


7.3 更加高效使用argparse修改超参数


每个人都有着不同的超参数管理方式,在这里我将分享我使用argparse管理超参数的方式,希望可以对大家有一些借鉴意义。通常情况下,为了使代码更加简洁和模块化,我一般会将有关超参数的操作写在config.py,然后在train.py或者其他文件导入就可以。具体的config.py可以参考如下内容

import argparse  
def get_options(parser=argparse.ArgumentParser()):  
    parser.add_argument('--workers', type=int, default=0,  
                        help='number of data loading workers, you had better put it '  
                              '4 times of your gpu')  
    parser.add_argument('--batch_size', type=int, default=4, help='input batch size, default=64')  
    parser.add_argument('--niter', type=int, default=10, help='number of epochs to train for, default=10')  
    parser.add_argument('--lr', type=float, default=3e-5, help='select the learning rate, default=1e-3')  
    parser.add_argument('--seed', type=int, default=118, help="random seed")  
    parser.add_argument('--cuda', action='store_true', default=True, help='enables cuda')  
    parser.add_argument('--checkpoint_path',type=str,default='',  
                        help='Path to load a previous trained model if not empty (default empty)')  
    parser.add_argument('--output',action='store_true',default=True,help="shows output")  
    opt = parser.parse_args()  
    if opt.output:  
        print(f'num_workers: {opt.workers}')  
        print(f'batch_size: {opt.batch_size}')  
        print(f'epochs (niters) : {opt.niter}')  
        print(f'learning rate : {opt.lr}')  
        print(f'manual_seed: {opt.seed}')  
        print(f'cuda enable: {opt.cuda}')  
        print(f'checkpoint_path: {opt.checkpoint_path}')  
    return opt  
if __name__ == '__main__':  
    opt = get_options()
# 导入必要库
...
import config
opt = config.get_options()
manual_seed = opt.seed
num_workers = opt.workers
batch_size = opt.batch_size
lr = opt.lr
niters = opt.niters
checkpoint_path = opt.checkpoint_path
# 随机数的设置,保证复现结果
def set_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    random.seed(seed)
    np.random.seed(seed)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
...
if __name__ == '__main__':
  set_seed(manual_seed)
  for epoch in range(niters):
    train(model,lr,batch_size,num_workers,checkpoint_path)
    val(model,lr,batch_size,num_workers,checkpoint_path)


目录
相关文章
|
4月前
|
存储 人工智能 PyTorch
基于PyTorch/XLA的高效分布式训练框架
基于PyTorch/XLA的高效分布式训练框架
284 2
|
4月前
|
机器学习/深度学习 存储 PyTorch
【AMP实操】解放你的GPU运行内存!在pytorch中使用自动混合精度训练
【AMP实操】解放你的GPU运行内存!在pytorch中使用自动混合精度训练
195 0
|
4月前
|
机器学习/深度学习 数据采集 PyTorch
使用PyTorch解决多分类问题:构建、训练和评估深度学习模型
使用PyTorch解决多分类问题:构建、训练和评估深度学习模型
使用PyTorch解决多分类问题:构建、训练和评估深度学习模型
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【PyTorch实战演练】AlexNet网络模型构建并使用Cifar10数据集进行批量训练(附代码)
【PyTorch实战演练】AlexNet网络模型构建并使用Cifar10数据集进行批量训练(附代码)
369 0
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)
【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)
349 0
|
30天前
|
机器学习/深度学习 并行计算 PyTorch
GPU 加速与 PyTorch:最大化硬件性能提升训练速度
【8月更文第29天】GPU(图形处理单元)因其并行计算能力而成为深度学习领域的重要组成部分。本文将介绍如何利用PyTorch来高效地利用GPU进行深度学习模型的训练,从而最大化训练速度。我们将讨论如何配置环境、选择合适的硬件、编写高效的代码以及利用高级特性来提高性能。
171 1
|
1月前
|
机器学习/深度学习 并行计算 PyTorch
PyTorch与DistributedDataParallel:分布式训练入门指南
【8月更文第27天】随着深度学习模型变得越来越复杂,单一GPU已经无法满足训练大规模模型的需求。分布式训练成为了加速模型训练的关键技术之一。PyTorch 提供了多种工具来支持分布式训练,其中 DistributedDataParallel (DDP) 是一个非常受欢迎且易用的选择。本文将详细介绍如何使用 PyTorch 的 DDP 模块来进行分布式训练,并通过一个简单的示例来演示其使用方法。
34 2
|
30天前
|
机器学习/深度学习 PyTorch 测试技术
深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
【8月更文第29天】深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch 是一个强大的深度学习框架,它提供了灵活的 API 和动态计算图,非常适合初学者和研究者使用。
34 0
|
3月前
|
机器学习/深度学习 并行计算 PyTorch
使用PyTorch Profiler进行模型性能分析,改善并加速PyTorch训练
加速机器学习模型训练是工程师的关键需求。PyTorch Profiler提供了一种分析工具,用于测量CPU和CUDA时间,以及内存使用情况。通过在训练代码中嵌入分析器并使用tensorboard查看结果,工程师可以识别性能瓶颈。Profiler的`record_function`功能允许为特定操作命名,便于跟踪。优化策略包括使用FlashAttention或FSDP减少内存使用,以及通过torch.compile提升速度。监控CUDA内核执行和内存分配,尤其是避免频繁的cudaMalloc,能有效提升GPU效率。内存历史记录分析有助于检测内存泄漏和优化批处理大小。
264 1
|
2月前
|
机器学习/深度学习 PyTorch TensorFlow
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。