《AI赋能的语音交互解决方案 Link Voice》电子版地址

简介: AI赋能的语音交互解决方案 Link Voice

《AI赋能的语音交互解决方案 Link Voice》AI赋能的语音交互解决方案 Link Voice

电子书:

屏幕快照 2022-06-17 上午9.58.35.png

                
            </div>
相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
目录
相关文章
|
8天前
|
数据采集 人工智能 监控
体验《AI大模型助力客户对话分析》解决方案测评
该方案详细描述了实现AI客服对话分析的实践原理和实施方法,包括数据收集、模型训练、部署及评估等步骤,逻辑清晰。但在OSS配置和模型选择等方面存在一些困惑,需进一步引导。示例代码大部分可直接应用,但特定环境下需调整。总体而言,方案基本能满足实际业务需求,但在处理复杂对话时需进一步优化。
36 6
|
12天前
|
数据采集 人工智能 API
《AI大模型助力客户对话分析》解决方案测评报告
《AI大模型助力客户对话分析》解决方案测评报告
38 4
|
12天前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。
|
14天前
|
数据采集 机器学习/深度学习 人工智能
《AI大模型助力客户对话分析》解决方案测评
本文对《AI大模型助力客户对话分析》解决方案进行了测评,详细介绍了实践原理和实施方法的清晰度、部署过程中的困惑、示例代码的适用性和异常处理以及业务场景的适用性和改进建议。方案整体实用性强,但在数据预处理、术语解释和行业特定模型训练方面有进一步提升的空间。
|
4天前
|
存储 人工智能 弹性计算
基于《文档智能 & RAG让AI大模型更懂业务》解决方案实践体验后的想法
通过实践《文档智能 & RAG让AI大模型更懂业务》实验,掌握了构建强大LLM知识库的方法,处理企业级文档问答需求。部署文档和引导充分,但需增加资源选型指导。文档智能与RAG结合提升了文档利用效率,但在答案质量和内容精确度上有提升空间。解决方案适用于法律文档查阅、技术支持等场景,但需加强数据安全和隐私保护。建议增加基于容量需求的资源配置指导。
32 4
|
6天前
|
人工智能 弹性计算 监控
触手可及,函数计算玩转 AI 大模型解决方案
阿里云推出的“触手可及,函数计算玩转 AI 大模型”解决方案,利用无服务器架构,实现AI大模型的高效部署和弹性伸缩。本文从实践原理、部署体验、优势展现及应用场景等方面全面评估该方案,指出其在快速部署、成本优化和运维简化方面的显著优势,同时也提出在性能监控、资源管理和安全性等方面的改进建议。
31 5
|
6天前
|
人工智能 数据安全/隐私保护 UED
RAG让AI大模型更懂业务解决方案部署使用体验
根据指导文档,部署过程得到了详细步骤说明的支持,包括环境配置、依赖安装及代码示例,确保了部署顺利进行。建议优化知识库问题汇总,增加部署失败案例参考,以提升用户体验。整体解决方案阅读与部署体验良好,有助于大型语言模型在特定业务场景的应用,未来可加强行业适应性和用户隐私保护。
27 5
|
3天前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,企业越来越关注大模型的私有化部署。本文详细探讨了硬件资源需求、数据隐私保护、模型可解释性、模型更新和维护等方面的挑战及解决方案,并提供了示例代码,帮助企业高效、安全地实现大模型的内部部署。
9 1
|
3天前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,大模型在各领域的应用日益广泛。然而,将其私有化部署到企业内部面临诸多挑战,如硬件资源需求高、数据隐私保护、模型可解释性差、更新维护成本高等。本文探讨了这些挑战,并提出了优化硬件配置、数据加密、可视化工具、自动化更新机制等解决方案,帮助企业顺利实现大模型的私有化部署。
11 1
|
4天前
|
人工智能 边缘计算 监控
边缘AI计算技术应用-实训解决方案
《边缘AI计算技术应用-实训解决方案》提供完整的实训体系,面向高校和科研机构的AI人才培养需求。方案包括云原生AI平台、百度AIBOX边缘计算硬件,以及8门计算机视觉实训课程与2门大模型课程。AI平台支持大规模分布式训练、超参数搜索、标注及自动化数据管理等功能,显著提升AI训练与推理效率。硬件涵盖多规格AIBOX服务器,支持多种推理算法及灵活部署。课程涵盖从计算机视觉基础到大模型微调的完整路径,通过真实商业项目实操,帮助学员掌握前沿AI技术和产业应用。
20 2

热门文章

最新文章