运筹优化学习06:拉格朗日松弛算法(一)

简介: 运筹优化学习06:拉格朗日松弛算法(一)

Guignard M. Lagrangean relaxation[J]. TOP, 2003, 11(2):151-200.

 

摘要


This paper reviews some of the most intriguing results and questions related to Lagrangean relaxation. It recalls essential properties of the Lagrangean relaxation and of the Lagrangean function, describes several algorithms to solve the Lagrangean dual problem, and considers Lagrangean heuristics, ad-hoc or generic, because these are an integral part of any Lagrangean approximation scheme. It discusses schemes that can potentially improve the Lagrangean relaxation bound, and describes several applications of Lagrangean relaxation, which demonstrate the flexibility of the approach, and permit either the computation of strong bounds on the optimal value of the MIP problem, or the use of a Lagrangean heuristic, possibly followed by an iterative improvement heuristic. The paper also analyzes several interesting questions, such as why it is sometimes possible to get a strong bound by solving simple problems, and why an a-priori weaker relaxation can sometimes be “just as good” as an a-priori stronger one.


本论文回顾了一些与拉格朗日松弛相关十分有趣的结论和问题。它回顾了朗格朗日函数和拉格朗日松弛的最本质的特征,描述了拉格朗日对偶问题,并考虑了拉格朗日启发式,不失特殊性和一般性,因为他们是任何拉格朗日近似方案的组成部分。讨论了方案对拉格朗日松弛边界的潜在改善能力,描述了朗格朗日松弛的一些应用来说明这一算法的灵活性,允许计算一些混合整数规划问题的强边界,或者使用拉格朗日启发式算法进行迭代改进。论文也讨论了许多有趣的问题,诸如为什么可以通过求解一个简单的问题得到一个强边界,为什么一个先验的弱约束有时与先验强约束的效果差不多。


引言


Why use Lagrangean relaxation for integer programming problems? How does one construct a Lagrangean relaxation? What tools are there to analyze the strength of a Lagrangean relaxation? Are there more powerful extensions than standard Lagrangean relaxation, and when should they be used? Why is it that one can sometimes solve a strong Lagrangean relaxation by solving trivial subproblems? How does one compute the Lagrangean relaxation bound? Can one take advantage of Lagrangean problem decomposition? Does the “strength” of the model used make a difference in terms of bounds? Can one strengthen Lagrangean relaxation bounds by cuts, either kept or dualized? How can one design a Lagrangean heuristic? Can one achieve better results by remodeling the problem prior to doing Lagrangean relaxation? These are some of the questions that this paper attempts to answer.


本文将回答以下问题:


在整数规划问题中为什么要使用拉格朗日松弛呢?

如何构建一个拉格朗日松弛?

有什么工具可以分析拉格朗日松弛的强度?

标准拉格朗日松弛算法有哪些比较有效的拓展,什么时候应用他们呢?

为什么有时可用通过求解一个不起眼的子问题就可以解决一个强拉格朗日松弛问题?

如何计算拉格朗日松弛边界?

拉格朗日分解有哪些优势呢?

一个强拉格朗日松弛能够以保持或对偶的方式被切割?

如何设计一个拉格朗日启发式算法?

在做拉格朗日松弛之前重构问题模型可以得到一个好的结果吗?

The papers starts with a description of relaxations, in particular Lagrangean relaxation (LR for short). It continues with the geometric interpretation of LR, and shows how this geometric interpretation is the best tool for analyzing the effectiveness of a particular LR scheme. Extensions of LR are also reviewed: Lagrangean decomposition and more generally substitution. The Integer Linearization Property is described in detail, as its detection may considerably reduce the computational burden.


文章从松弛的描述,特别是拉格朗日松弛(LR)开始,给出了拉格朗日松弛的几何解释,并认为这种几何解释是分析特定拉格朗日松弛方案有效性的最好工具。也回顾了拉格朗日松弛的拓展问题:拉格朗日分解和更通用的子课题。详细描述了可以大大降低计算成本的整数线性属性(Interger Linearization Property)。


The next section concentrates on solution methods for the dual problem, starting with subgradient optimization, and following with methods based on Lagrangean properties: cutting planes (or constraint generation), Dantzig-and-Wolfe (or column generation), the volume algorithm, bundle and augmented Lagrangean methods, as well as some hybrid approaches.


接着,聚焦对偶问题的解决方法,从次梯度优化到具有拉格朗日特性的割平面法(或约束生成)、Dantzig-and-Wolfe算法(列生成方法)、 the volume algorithm(体算法)、 bundle and augmented Lagrangean methods(束与增广拉格朗日方法)、以及一些混合方法。也回顾了对设计高效优化方法至关重要的拉格朗日函数的一些特征。


This follows the review of some characteristics of the Lagrangean function,important for the design of efficient optimization methods. Cuts that are violated by Lagrangean solutions appear to contain additional information, not captured by the Lagrangean model, and imbedding them in the Lagrangean process may a priori appear to be a good idea. They can either be dualized in Relax-and-Cut schemes, preserving the structure of the Lagrangean subproblems, or appended to the other kept constraints, but at the cost of possibly making the Lagrangean subproblems harder to solve. The next section reviews the conditions for bound improvement under both circumstances.


违背拉格朗日解决方案的切割包含着一些不为拉格朗日模型所囊括的额外信息,将其嵌入到拉格朗日过程中也许可以提前得到一些好点子。如保留朗格朗日子问题结构的对偶松弛和切割方案,或者是增加其他的约束;但潜在的成本是朗格朗日子问题的求解变的更难。接着又综述两种方式对边界的改善情况。


The following section is devoted to Lagrangean heuristics, which complement Lagrangean bounding by making an attempt at transforming infeasible Lagrangean solutions into good feasible solutions.


后续的章节分析了朗格朗日启发,通过尝试变换不可行的朗格朗日子方案为可行的解决方案,以获取朗格朗日边界。


Several applications are reviewed throughout the paper, with emphasis on the steps followed either to re-model the problem or to relax it in an efficient manner.


一些应用也贯穿论文的始终,要么是强调问题模型的重构、要么是以有效的方式放松约束。


The literature on Lagrangean relaxation, its extensions and applications is enormous. As a consequence no attempt has been made here to quote every possible paper dealing with Lagrangean relaxation. Instead, we only list papers that we mention in the text because they directly relate to the material covered here, as they introduced novel ideas or presented new results, new modeling and decomposition approaches, or new algorithms. Finally, we refer the reader to a few pioneer and/or survey papers on Lagrangean relaxation, as they may help get a clearer picture of the whole field.


朗格朗日松弛、拓展问题及其应用的文献不胜枚举,我们从不尝试引证每一篇相关的文献成果。反之,我只列举与材料覆盖直接相关论文,因为它们提出了新的理念或展示了新的成果、模型和分解方法或算法。最后,我们引用了一些拉格朗日松弛的综述论文,帮助你清晰的一览拉格朗日松弛的全貌。主要文献如下:


Everett (1963),

Held and Karp (1970),

Held and Karp (1971),

Geoffrion (1974),

Shapiro (1974),

Shapiro (1979),

Fisher (1981),

Fisher (1985),

Beasley (1993), and Lemar´ echal (2001)


符号及描述

如果P是一个优化问题,则可定义如下记号:


image.png

松弛优化问题

2019091019165123.png

20190910191711659.png

image.png

对问题进行松弛具有两个好处:第一,它提供了困难优化问题的边界;第二,对于解决方案而言,如果原始问题不可解,它作为特定启发式算法的起点。


20190910192142813.png

这里我们研究整数线性规划问题,其约束集合V是一个有理多面体约束,构成x的子集最少有一个整数约束;我们不区分纯整数规划和混合整数规划问题。




整数规划中最常用的松弛方法是对问题的连续性松弛,此时问题P的整数约束被忽略


拉格朗日松弛


下面介绍Held and Karp在1970和1971年提出的拉格朗日松弛(LR),不是一般性,假设如下问题:


gif.gif


20190910193205493.png


引入一个非负的权重向量,即拉格朗日乘数,得到如下问题:


20190910193352329.png


将问题的难约束放松并附加拉格朗日乘子作为目标函数的一部分,构成松弛问题。可知:松弛问题包含原始问题,任何d都都小于或等于。也就是说,对于所有的,的最优解是问题P最优解的下界。


综上,问题还可以转化为求问题P最紧的拉格朗日下界的对偶问题:


20190910194741594.png


至此,在我们讨论拉格朗日松弛边界或简称朗格朗日边界时,我们通常指的是而非。


假设我们考虑的复杂约束是等式而非不等式,则有如下问题:


20190910195055739.png


将一个等式约束,通过两个朗格朗日乘子松驰为新的朗格朗日松弛问题,之后合并为并不要求为非负数的松弛问题


可行的拉格朗日方案




相关文章
|
6天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
31 3
|
6天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
22 2
|
21天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
18天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
22天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
18天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
22天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
24天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
56 1
|
20天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。