运筹优化学习01:Lingo入门与错误列表分析(三)

简介: 运筹优化学习01:Lingo入门与错误列表分析

image.pngimage.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

6 致谢

参考资料1:

视频教程:快速学习Lingo软件及编程方法https://www.bilibili.com/video/av36145650/


完整课程连接:https://mooc1-1.chaoxing.com/course/203774897.html(收费的)


参考资料2:Lingo错误列表汇总


https://blog.csdn.net/JX_Cesare/article/details/81670029


相关文章
|
6月前
|
算法 机器人 Python
动态规划法在扫地机器人中的实战应用(基于动作值函数的策略迭代 python 附源码)
动态规划法在扫地机器人中的实战应用(基于动作值函数的策略迭代 python 附源码)
82 0
|
25天前
|
人工智能 人机交互 智能硬件
从大模型的原理到提示词优化
本文介绍了大语言模型(LLM)的基本概念及其工作原理,重点探讨了AI提示词(Prompt)的重要性和几种有效技巧,包括角色设定、One-shot/Few-shot、任务拆解和思维链。通过实例解析,展示了如何利用这些技巧提升LLM的输出质量和准确性,强调了提供高质量上下文信息对优化LLM表现的关键作用。
42 0
|
2月前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
54 4
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【2024泰迪杯】C 题:竞赛论文的辅助自动评阅 问题分析及Python 代码实现
本文介绍了2024泰迪杯C题“竞赛论文的辅助自动评阅”的问题分析和Python代码实现,涵盖了论文质量特征构造、自动评分模型建立以及如何利用自然语言处理技术和大语言模型进行论文自动评阅的方法。
73 2
【2024泰迪杯】C 题:竞赛论文的辅助自动评阅 问题分析及Python 代码实现
|
机器学习/深度学习 自然语言处理 算法
【机器学习实战】10分钟学会Python怎么用EM期望最大化进行参数估计(十五)
【机器学习实战】10分钟学会Python怎么用EM期望最大化进行参数估计(十五)
215 0
从0到1学习Yalmip工具箱(2)-决策变量进阶
从0到1学习Yalmip工具箱第二章,决策变量进阶学习
|
编解码 自然语言处理 数据可视化
MIM方法为什么简单高效?可视化和大规模实验给出了答案
MIM方法为什么简单高效?可视化和大规模实验给出了答案
212 0
MIM方法为什么简单高效?可视化和大规模实验给出了答案
|
机器学习/深度学习 人工智能 算法
强化学习从基础到进阶-常见问题和面试必知必答[1]:强化学习概述、序列决策、动作空间定义、策略价值函数、探索与利用、Gym强化学习实验
强化学习从基础到进阶-常见问题和面试必知必答[1]:强化学习概述、序列决策、动作空间定义、策略价值函数、探索与利用、Gym强化学习实验
|
机器学习/深度学习 运维 自然语言处理
一文读懂!异常检测全攻略!从统计方法到机器学习 ⛵
本文系统介绍了『单变量异常检测』和『多变量异常检测』识别技术,包括传统的统计方法(四分位距、标准差),以及前沿的机器学习模型(孤立森林、DBSCAN、LOF局部离群因子)。
1714 2
一文读懂!异常检测全攻略!从统计方法到机器学习 ⛵
|
决策智能 Windows
运筹优化学习01:Lingo入门与错误列表分析(二)
运筹优化学习01:Lingo入门与错误列表分析
运筹优化学习01:Lingo入门与错误列表分析(二)