【LSTM预测】基于麻雀算法优化卷积神经网络结合长短时记忆SSA-CNN-LSTM(多输入单输出)电力负荷预测含Matlab代码

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 【LSTM预测】基于麻雀算法优化卷积神经网络结合长短时记忆SSA-CNN-LSTM(多输入单输出)电力负荷预测含Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

为了进一步完善电力市场化的构建以提高电网公司的市场竞争力,短期电力负荷预测对电网的规划以及检修都具有关键的作用。所以要求对短期电力负荷预测进行更深入的研究与探索。对样本数据进行相应的分析处理,对于异常数据进行修正。进行负荷预测还要将不同影响因素的量纲考虑在其中,量纲的不同对最后的预测结果也存在一定的影响,故对样本数据进行归一化处理,以消除不同量纲对短期电力负荷预测结果的影响。当进行负荷预测时,长短期记忆(LSTM)神经网络模型存在的不足是:关键参数主要是依靠研究人员的经验选取的。为了解决此问题,引入麻雀搜索算法(Sparrow Search Algorithm,SSA)对其关键参数进行寻优,找到最优的模型参数。为提高预测精度,本文提出了SSA-CNN-LSTM模型,对CNN-LSTM模型的参数进行优化,从而得到该模型中较好的一组参数,,结果表明SSA-CNN-LSTM模型具有更高的预测精度。

⛄ 部分代码

%_________________________________________________________________________________

%  Salp Swarm Algorithm (SSA) source codes version 1.0


%

%   Main paper:

%   S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, S.M. Mirjalili,

%   Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems

%   Advances in Engineering Software

%   DOI: http://dx.doi.org/10.1016/j.advengsoft.2017.07.002

%____________________________________________________________________________________


function [FoodFitness,FoodPosition,Convergence_curve]=SSA(N,Max_iter,lb,ub,dim,fobj)

if size(ub,1)==1

   ub=ones(dim,1)*ub;

   lb=ones(dim,1)*lb;

end

Convergence_curve = zeros(1,Max_iter);

%Initialize the positions of salps

SalpPositions=initialization(N,dim,ub,lb);

FoodPosition=zeros(1,dim);

FoodFitness=inf;

%calculate the fitness of initial salps

for i=1:size(SalpPositions,1)

   SalpFitness(1,i)=fobj(SalpPositions(i,:));

end

[sorted_salps_fitness,sorted_indexes]=sort(SalpFitness);

for newindex=1:N

   Sorted_salps(newindex,:)=SalpPositions(sorted_indexes(newindex),:);

end

FoodPosition=Sorted_salps(1,:);

FoodFitness=sorted_salps_fitness(1);

%Main loop

l=2; % start from the second iteration since the first iteration was dedicated to calculating the fitness of salps

while l<Max_iter+1

   c1 = 2*exp(-(4*l/Max_iter)^2); % Eq. (3.2) in the paper

   for i=1:size(SalpPositions,1)

       SalpPositions= SalpPositions';

       if i<=N/2

           for j=1:1:dim

               c2=rand();

               c3=rand();

               %%%%%%%%%%%%% % Eq. (3.1) in the paper %%%%%%%%%%%%%%

               if c3<0.5

                   SalpPositions(j,i)=FoodPosition(j)+c1*((ub(j)-lb(j))*c2+lb(j));

               else

                   SalpPositions(j,i)=FoodPosition(j)-c1*((ub(j)-lb(j))*c2+lb(j));

               end

               %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

           end

       elseif i>N/2 && i<N+1

           point1=SalpPositions(:,i-1);

           point2=SalpPositions(:,i);

           SalpPositions(:,i)=(point2+point1)/2; % % Eq. (3.4) in the paper

       end

       SalpPositions= SalpPositions';

   end

   for i=1:size(SalpPositions,1)

       Tp=SalpPositions(i,:)>ub';Tm=SalpPositions(i,:)<lb';SalpPositions(i,:)=(SalpPositions(i,:).*(~(Tp+Tm)))+ub'.*Tp+lb'.*Tm;

       SalpFitness(1,i)=fobj(SalpPositions(i,:));

       if SalpFitness(1,i)<FoodFitness

           FoodPosition=SalpPositions(i,:);

           FoodFitness=SalpFitness(1,i);

       end

   end

   Convergence_curve(l)=FoodFitness;

   l = l + 1;

end

⛄ 运行结果

⛄ 参考文献

[1]徐先峰, 黄刘洋, 龚美. 基于卷积神经网络与双向长短时记忆网络组合模型的短时交通流预测[J]. 工业仪表与自动化装置, 2020.

[2]姜南林. 基于改进麻雀搜索算法优化长短期记忆网络的短期电力负荷预测研究.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
150 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
121 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
机器学习/深度学习 自然语言处理 数据可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
|
5月前
|
机器学习/深度学习 API 异构计算
7.1.3.2、使用飞桨实现基于LSTM的情感分析模型的网络定义
该文章详细介绍了如何使用飞桨框架实现基于LSTM的情感分析模型,包括网络定义、模型训练、评估和预测的完整流程,并提供了相应的代码实现。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
5月前
|
机器学习/深度学习
【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
222 2
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
RNN、LSTM、GRU神经网络构建人名分类器(三)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。
|
7月前
|
机器学习/深度学习 数据采集
RNN、LSTM、GRU神经网络构建人名分类器(一)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。
|
7月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
122 6