MySQL 大表优化方案

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: MySQL 大表优化方案

垂直拆分

垂直分库是根据数据库里面的数据表的相关性进行拆分,比如:一个数据库里面既存在用户数据,又存在订单数据,那么垂直拆分可以把用户数据放到用户库、把订单数据放到订单库。垂直分表是对数据表进行垂直拆分的一种方式,常见的是把一个多字段的大表按常用字段和非常用字段进行拆分,每个表里面的数据记录数一般情况下是相同的,只是字段不一样,使用主键关联

垂直拆分的优点是:

  • 可以使得行数据变小,一个数据块 (Block) 就能存放更多的数据,在查询时就会减少 I/O 次数 (每次查询时读取的 Block 就少)
  • 可以达到最大化利用 Cache 的目的,具体在垂直拆分的时候可以将不常变的字段放一起,将经常改变的放一起
  • 数据维护简单

缺点是:

  • 主键出现冗余,需要管理冗余列
  • 会引起表连接 JOIN 操作(增加 CPU 开销)可以通过在业务服务器上进行 join 来减少数据库压力
  • 依然存在单表数据量过大的问题(需要水平拆分)
  • 事务处理复杂

水平拆分

概述

水平拆分是通过某种策略将数据分片来存储,分库内分表和分库两部分,每片数据会分散到不同的 MySQL 表或库,达到分布式的效果,能够支持非常大的数据量。前面的表分区本质上也是一种特殊的库内分表

库内分表,仅仅是单纯的解决了单一表数据过大的问题,由于没有把表的数据分布到不同的机器上,因此对于减轻 MySQL 服务器的压力来说,并没有太大的作用,大家还是竞争同一个物理机上的 IO、CPU、网络,这个就要通过分库来解决

前面垂直拆分的用户表如果进行水平拆分,结果是:

实际情况中往往会是垂直拆分和水平拆分的结合,即将 Users_A_MUsers_N_Z 再拆成 UsersUserExtras,这样一共四张表

 

水平拆分的优点是:

  • 不存在单库大数据和高并发的性能瓶颈
  • 应用端改造较少
  • 提高了系统的稳定性和负载能力

缺点是:

  • 分片事务一致性难以解决
  • 跨节点 Join 性能差,逻辑复杂
  • 数据多次扩展难度跟维护量极大

分片原则

  • 能不分就不分,参考单表优化
  • 分片数量尽量少,分片尽量均匀分布在多个数据结点上,因为一个查询 SQL 跨分片越多,则总体性能越差,虽然要好于所有数据在一个分片的结果,只在必要的时候进行扩容,增加分片数量
  • 分片规则需要慎重选择做好提前规划,分片规则的选择,需要考虑数据的增长模式,数据的访问模式,分片关联性问题,以及分片扩容问题,最近的分片策略为范围分片,枚举分片,一致性 Hash 分片,这几种分片都有利于扩容
  • 尽量不要在一个事务中的 SQL 跨越多个分片,分布式事务一直是个不好处理的问题
  • 查询条件尽量优化,尽量避免 Select * 的方式,大量数据结果集下,会消耗大量带宽和 CPU 资源,查询尽量避免返回大量结果集,并且尽量为频繁使用的查询语句建立索引。
  • 通过数据冗余和表分区赖降低跨库 Join 的可能

这里特别强调一下分片规则的选择问题,如果某个表的数据有明显的时间特征,比如订单、交易记录等,则他们通常比较合适用时间范围分片,因为具有时效性的数据,我们往往关注其近期的数据,查询条件中往往带有时间字段进行过滤,比较好的方案是,当前活跃的数据,采用跨度比较短的时间段进行分片,而历史性的数据,则采用比较长的跨度存储。

总体上来说,分片的选择是取决于最频繁的查询 SQL 的条件,因为不带任何 Where 语句的查询 SQL,会遍历所有的分片,性能相对最差,因此这种 SQL 越多,对系统的影响越大,所以我们要尽量避免这种 SQL 的产生。

解决方案

由于水平拆分牵涉的逻辑比较复杂,当前也有了不少比较成熟的解决方案。这些方案分为两大类:客户端架构和代理架构。

客户端架构

通过修改数据访问层,如 JDBC、Data Source、MyBatis,通过配置来管理多个数据源,直连数据库,并在模块内完成数据的分片整合,一般以 Jar 包的方式呈现

这是一个客户端架构的例子:

可以看到分片的实现是和应用服务器在一起的,通过修改 Spring JDBC 层来实现

客户端架构的优点是:

  • 应用直连数据库,降低外围系统依赖所带来的宕机风险
  • 集成成本低,无需额外运维的组件

缺点是:

  • 限于只能在数据库访问层上做文章,扩展性一般,对于比较复杂的系统可能会力不从心
  • 将分片逻辑的压力放在应用服务器上,造成额外风险

代理架构

通过独立的中间件来统一管理所有数据源和数据分片整合,后端数据库集群对前端应用程序透明,需要独立部署和运维代理组件

这是一个代理架构的例子:

代理组件为了分流和防止单点,一般以集群形式存在,同时可能需要 Zookeeper 之类的服务组件来管理

代理架构的优点是:

  • 能够处理非常复杂的需求,不受数据库访问层原来实现的限制,扩展性强
  • 对于应用服务器透明且没有增加任何额外负载

缺点是:

  • 需部署和运维独立的代理中间件,成本高
  • 应用需经过代理来连接数据库,网络上多了一跳,性能有损失且有额外风险
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
4天前
|
存储 SQL 关系型数据库
Mysql高可用架构方案
本文阐述了Mysql高可用架构方案,介绍了 主从模式,MHA模式,MMM模式,MGR模式 方案的实现方式,没有哪个方案是完美的,开发人员在选择何种方案应用到项目中也没有标准答案,合适的才是最好的。
44 3
Mysql高可用架构方案
|
4天前
|
缓存 监控 关系型数据库
如何优化MySQL查询速度?
如何优化MySQL查询速度?【10月更文挑战第31天】
15 3
|
5天前
|
关系型数据库 MySQL
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
26 5
|
6天前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
24 1
|
13天前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:百万级数据统计优化实践
【10月更文挑战第21天】 在处理大规模数据集时,传统的单体数据库解决方案往往力不从心。MySQL和Redis的组合提供了一种高效的解决方案,通过将数据库操作与高速缓存相结合,可以显著提升数据处理的性能。本文将分享一次实际的优化案例,探讨如何利用MySQL和Redis共同实现百万级数据统计的优化。
42 9
|
13天前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:优化百万数据查询的实战经验
【10月更文挑战第13天】 在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。
38 5
|
10天前
|
关系型数据库 MySQL
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
21 1
|
8天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
40 0
|
8天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
35 0
|
17天前
|
存储 监控 关系型数据库
MySQL并发控制与管理:优化数据库性能的关键
【10月更文挑战第17天】MySQL并发控制与管理:优化数据库性能的关键
74 0