PyTorch-PaddlePaddle模型转化&API映射关系对照表

简介: PyTorch-PaddlePaddle模型转化&API映射关系对照表

本项目基于X2Paddle研发过程梳理了PyTorch(v1.8.1)与PaddlePaddle 2.0.0 模型转化以及常用API差异与分析。通过本项目,帮助开发者快速迁移PyTorch使用经验,完成模型的开发与调优。


X2Paddle


X2Paddle支持将其余深度学习框架训练得到的模型,转换至PaddlePaddle模型,包括TensorFlow/Caffe/ONNX/PyTorch。


安装


pip install x2paddle==1.0.0rc0 --index https://pypi.Python.org/simple/


PyTorch2Paddle


PyTorch2Paddle支持trace和script两种方式的转换,均是PyTorch动态图到Paddle动态图的转换,转换后的Paddle动态图运用动转静可转换为静态图模型。trace方式生成的代码可读性较强,较为接近原版PyTorch代码的组织结构;script方式不需要知道输入数据的类型和大小即可转换,使用上较为方便,但目前PyTorch支持的script代码方式有所限制,所以支持转换的代码也有所限制。用户可根据自身需求,选择转换方式。

使用trace方式需安装以下依赖 pandas treelib


使用方式


from x2paddle.convert import pytorch2paddle
pytorch2paddle(module=torch_module, 
               save_dir="./pd_model", 
               jit_type="trace", 
               input_examples=[torch_input])
# module (torch.nn.Module): PyTorch的Module。
# save_dir (str): 转换后模型的保存路径。
# jit_type (str): 转换方式。默认为"trace"。
# input_examples (list[torch.tensor]): torch.nn.Module的输入示例,list的长度必须与输入的长度一致。默认为None。

注意: 当jit_type为"trace"时,input_examples不可为None,转换后自动进行动转静; 当jit_type为"script"时",input_examples不为None时,才可以进行动转静。


使用示例


import torch
import numpy as np
from torchvision.models import AlexNet
from torchvision.models.utils import load_state_dict_from_url
# 构建输入
input_data = np.random.rand(1, 3, 224, 224).astype("float32")
# 获取PyTorch Module
torch_module = AlexNet()
torch_state_dict = load_state_dict_from_url('https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth')
torch_module.load_state_dict(torch_state_dict)
# 设置为eval模式
torch_module.eval()
# 进行转换
from x2paddle.convert import pytorch2paddle
pytorch2paddle(torch_module, 
               save_dir="pd_model_trace", 
               jit_type="trace", 
               input_examples=[torch.tensor(input_data)])


PyTorch-PaddlePaddle API映射


API映射表梳理了PyTorch(v1.8.1)常用API与PaddlePaddle 2.0.0 API对应关系与差异分析。


API映射表目录


类别 简介
基础操作类API映射列表 主要为torch.XX类API
组网类API映射列表 主要为torch.nn.XX类下组网相关的API
Loss类API映射列表 主要为torch.nn.XX类下loss相关的API
工具类API映射列表 主要为torch.nn.XX类下分布式相关的API和torch.utils.XX类API
视觉类API映射列表 主要为torchvision.XX类API

注:所有API列表均持续更新中……


一个简单的PyTorch-PaddlePaddle的例子


PyTorch代码(来自官方文档


import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose
# Download training data from open datasets.
training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
)
# Download test data from open datasets.
test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor(),
)
batch_size = 64
# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
# Define model
class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
            nn.ReLU()
        )
    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits
model = NeuralNetwork().to(device)
print(model)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    for batch, (X, y) in enumerate(dataloader):
        X, y = X.to(device), y.to(device)
        # Compute prediction error
        pred = model(X)
        loss = loss_fn(pred, y)
        # Backpropagation
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if batch % 100 == 0:
            loss, current = loss.item(), batch * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    model.eval()
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()
    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
epochs = 5
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(train_dataloader, model, loss_fn, optimizer)
    test(test_dataloader, model, loss_fn)


PaddlePaddle代码


1.导入所需库


import paddle
from paddle import nn
from paddle.io import DataLoader
from paddle.vision import datasets
from paddle.vision.transforms import ToTensor, Compose
from visualdl import LogWriter


2.获取FashionMNIST数据集


training_data = datasets.FashionMNIST(
    mode='train',
    transform=ToTensor(),
)
test_data = datasets.FashionMNIST(
    mode='test',
    transform=ToTensor(),
)


3.设置DataLoader


batch_size = 64
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
Shape of X [N, C, H, W]:  [64, 1, 28, 28]
Shape of y:  [64, 1] paddle.int64


4.定义网络


place  = paddle.set_device('gpu' if paddle.is_compiled_with_cuda() else 'cpu')
class NeuralNetwork(nn.Layer):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
            nn.ReLU()
        )
    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits
model = NeuralNetwork()
paddle.summary(model,input_size=(1,28*28),dtypes='float32')
---------------------------------------------------------------------------
 Layer (type)       Input Shape          Output Shape         Param #    
===========================================================================
   Flatten-1         [[1, 784]]            [1, 784]              0       
   Linear-1          [[1, 784]]            [1, 512]           401,920    
    ReLU-1           [[1, 512]]            [1, 512]              0       
   Linear-2          [[1, 512]]            [1, 512]           262,656    
    ReLU-2           [[1, 512]]            [1, 512]              0       
   Linear-3          [[1, 512]]            [1, 10]             5,130     
    ReLU-3           [[1, 10]]             [1, 10]               0       
===========================================================================
Total params: 669,706
Trainable params: 669,706
Non-trainable params: 0
---------------------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.02
Params size (MB): 2.55
Estimated Total Size (MB): 2.58
---------------------------------------------------------------------------
{'total_params': 669706, 'trainable_params': 669706}


5.设置优化器


loss_fn = nn.CrossEntropyLoss()
optimizer = paddle.optimizer.SGD(parameters=model.parameters(), learning_rate=1e-3)


6.定义训练过程


def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    for batch, (X, y) in enumerate(dataloader):
        # Compute prediction error
        pred = model(X)
        loss = loss_fn(pred, y)
        # Backpropagation
        optimizer.clear_grad()
        loss.backward()
        optimizer.step()
        if batch % 100 == 0:
            loss, current = loss.item(), batch * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")


7.定义测试过程


def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    model.eval()
    test_loss, correct = 0, 0
    with paddle.no_grad():
        for X, y in dataloader:
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1).numpy() == y.squeeze().numpy()).sum().item()
    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
    return test_loss,correct


8.训练与验证


epochs = 5
log_writer = LogWriter(logdir="./log")
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(train_dataloader, model, loss_fn, optimizer)
    loss,acc=test(test_dataloader, model, loss_fn)
    log_writer.add_scalar(tag="test/loss", step=t, value=loss)
    log_writer.add_scalar(tag="test/acc", step=t, value=acc)
print("Done!")


测试集上梯度下降图


image.pngimage.png

点击此处查看本环境基本用法.  

Please click here for more detailed instructions.


目录
相关文章
|
13天前
|
机器学习/深度学习 数据采集 人工智能
PyTorch学习实战:AI从数学基础到模型优化全流程精解
本文系统讲解人工智能、机器学习与深度学习的层级关系,涵盖PyTorch环境配置、张量操作、数据预处理、神经网络基础及模型训练全流程,结合数学原理与代码实践,深入浅出地介绍激活函数、反向传播等核心概念,助力快速入门深度学习。
66 1
|
3月前
|
JSON 监控 网络协议
干货分享“对接的 API 总是不稳定,网络分层模型” 看电商 API 故障的本质
本文从 OSI 七层网络模型出发,深入剖析电商 API 不稳定的根本原因,涵盖物理层到应用层的典型故障与解决方案,结合阿里、京东等大厂架构,详解如何构建高稳定性的电商 API 通信体系。
|
5月前
|
机器学习/深度学习 PyTorch API
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
本文深入探讨神经网络模型量化技术,重点讲解训练后量化(PTQ)与量化感知训练(QAT)两种主流方法。PTQ通过校准数据集确定量化参数,快速实现模型压缩,但精度损失较大;QAT在训练中引入伪量化操作,使模型适应低精度环境,显著提升量化后性能。文章结合PyTorch实现细节,介绍Eager模式、FX图模式及PyTorch 2导出量化等工具,并分享大语言模型Int4/Int8混合精度实践。最后总结量化最佳策略,包括逐通道量化、混合精度设置及目标硬件适配,助力高效部署深度学习模型。
670 21
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
|
13天前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
52 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
2月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.0性能优化实战:4种常见代码错误严重拖慢模型
我们将深入探讨图中断(graph breaks)和多图问题对性能的负面影响,并分析PyTorch模型开发中应当避免的常见错误模式。
133 9
|
22天前
|
人工智能 前端开发 测试技术
Kimi K2 模型更新,带来更强的代码能力、更快的 API
今天,Kimi K2 模型的最新版本 0905 开源发布,进一步提升其在真实编程任务中的表现
233 0
|
3月前
|
API
本地用阿里云API调用的r1模型,返回的think字段中有奇怪的东西,并且停止思考
这两张图片展示了模型生成内容时可能出现的异常情况,包括图像模糊、结构错误或不符合预期的结果。这可能是由于模型训练数据不足、输入指令不清晰或模型本身存在局限性所致。建议优化输入提示词或调整模型参数以提升输出质量。
|
4月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
136 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
|
3月前
|
机器学习/深度学习 数据可视化 PyTorch
Flow Matching生成模型:从理论基础到Pytorch代码实现
本文将系统阐述Flow Matching的完整实现过程,包括数学理论推导、模型架构设计、训练流程构建以及速度场学习等关键组件。通过本文的学习,读者将掌握Flow Matching的核心原理,获得一个完整的PyTorch实现,并对生成模型在噪声调度和分数函数之外的发展方向有更深入的理解。
1097 0
Flow Matching生成模型:从理论基础到Pytorch代码实现
|
4月前
|
缓存 自然语言处理 监控
基于通义大模型的智能客服系统构建实战:从模型微调到API部署
本文详细解析了基于通义大模型的智能客服系统构建全流程,涵盖数据准备、模型微调、性能优化及API部署等关键环节。通过实战案例与代码演示,展示了如何针对客服场景优化训练数据、高效微调大模型、解决部署中的延迟与并发问题,以及构建完整的API服务与监控体系。文章还探讨了性能优化进阶技术,如模型量化压缩和缓存策略,并提供了安全与合规实践建议。最终总结显示,微调后模型意图识别准确率提升14.3%,QPS从12.3提升至86.7,延迟降低74%。
1089 14

热门文章

最新文章

推荐镜像

更多