2023最新 | 单目深度估计网络结构的通用性研究
单目深度估计已经被广泛研究,最近已经报道了许多在性能上显著改进的方法。然而,大多数先前的工作都是在一些基准数据集(如KITTI数据集)上进行评估的,并且没有一项工作对单目深度估计的泛化性能进行深入分析。本文深入研究了各种骨干网络(例如CNN和Transformer模型),以推广单目深度估计。首先,评估了分布内和分布外数据集上的SOTA模型,这在网络训练期间从未见过。然后,使用合成纹理移位数据集研究了基于CNN和Transformer的模型中间层表示的内部属性。通过大量实验,观察到transformer呈现出强烈的形状偏差,而CNN具有强烈纹理偏差。