【Pytorch】nn.Linear,nn.Conv

简介:

nn.Linear

nn.Conv1d

nn.Conv1dkernel_size=1时,效果与nn.Linear相同,不过输入数据格式不同:
https://blog.csdn.net/l1076604169/article/details/107170146

import torch


def count_parameters(model):
    """Count the number of parameters in a model."""
    return sum([p.numel() for p in model.parameters()])


conv = torch.nn.Conv1d(3, 32, kernel_size=1)
print(count_parameters(conv))
# 128

linear = torch.nn.Linear(3, 32)
print(count_parameters(linear))
# 128

print(conv.weight.shape)
# torch.Size([32, 3, 1])
print(linear.weight.shape)
# torch.Size([32, 3])

# use same initialization
linear.weight = torch.nn.Parameter(conv.weight.squeeze(2))
linear.bias = torch.nn.Parameter(conv.bias)

tensor = torch.randn(128, 256, 3)   # [batch, feature_num,feature_size]
permuted_tensor = tensor.permute(0, 2, 1).clone().contiguous()  # [batch, feature_size,feature_num]

out_linear = linear(tensor)
print(out_linear.mean())
# tensor(0.0344, grad_fn=<MeanBackward0>)
print(out_linear.shape)
# torch.Size([128, 256, 32])


out_conv = conv(permuted_tensor)
print(out_conv.mean())
# tensor(0.0344, grad_fn=<MeanBackward0>)
print(out_conv.shape)
# torch.Size([128, 32, 256])

nn.Conv2d

nn.Conv3d

相关文章
|
PyTorch 算法框架/工具
Pytorch学习笔记(六):view()和nn.Linear()函数详解
这篇博客文章详细介绍了PyTorch中的`view()`和`nn.Linear()`函数,包括它们的语法格式、参数解释和具体代码示例。`view()`函数用于调整张量的形状,而`nn.Linear()`则作为全连接层,用于固定输出通道数。
1049 0
Pytorch学习笔记(六):view()和nn.Linear()函数详解
|
存储 PyTorch 算法框架/工具
【chat-gpt问答记录】关于pytorch中的线性层nn.Linear()
【chat-gpt问答记录】关于pytorch中的线性层nn.Linear()
529 0
|
PyTorch 算法框架/工具
PyTorch的nn.Linear()详解
从输入输出的张量的shape角度来理解,相当于一个输入为[batch_size, in_features]的张量变换成了[batch_size, out_features]的输出张量。
992 0
|
11月前
|
机器学习/深度学习 JavaScript PyTorch
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
生成对抗网络(GAN)的训练效果高度依赖于损失函数的选择。本文介绍了经典GAN损失函数理论,并用PyTorch实现多种变体,包括原始GAN、LS-GAN、WGAN及WGAN-GP等。通过分析其原理与优劣,如LS-GAN提升训练稳定性、WGAN-GP改善图像质量,展示了不同场景下损失函数的设计思路。代码实现覆盖生成器与判别器的核心逻辑,为实际应用提供了重要参考。未来可探索组合优化与自适应设计以提升性能。
968 7
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
|
5月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
381 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
4月前
|
边缘计算 人工智能 PyTorch
130_知识蒸馏技术:温度参数与损失函数设计 - 教师-学生模型的优化策略与PyTorch实现
随着大型语言模型(LLM)的规模不断增长,部署这些模型面临着巨大的计算和资源挑战。以DeepSeek-R1为例,其671B参数的规模即使经过INT4量化后,仍需要至少6张高端GPU才能运行,这对于大多数中小型企业和研究机构来说成本过高。知识蒸馏作为一种有效的模型压缩技术,通过将大型教师模型的知识迁移到小型学生模型中,在显著降低模型复杂度的同时保留核心性能,成为解决这一问题的关键技术之一。
|
6月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.0性能优化实战:4种常见代码错误严重拖慢模型
我们将深入探讨图中断(graph breaks)和多图问题对性能的负面影响,并分析PyTorch模型开发中应当避免的常见错误模式。
384 9
|
8月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
352 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
本文将深入探讨L1、L2和ElasticNet正则化技术,重点关注其在PyTorch框架中的具体实现。关于这些技术的理论基础,建议读者参考相关理论文献以获得更深入的理解。
256 4
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现

热门文章

最新文章

推荐镜像

更多