【pytorch】(五)优化模型参数

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介:

优化模型参数

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda

device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)

# ======================= 数据 =======================
training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)

train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)


# ======================= 模型 =======================
class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()

        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28 * 28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
        )

    def forward(self, x):
        x = x.flatten(1)
        logits = self.linear_relu_stack(x)
        return logits

现在我们已经有模型和数据集了,是时候利用数据集来训练、验证和测试我们的模型了。训练模型是一个迭代过程;在每次迭代(称为epoch)中,数据输入模型;模型对输出进行估计;优化器根据估计值与真实值的误差(损失loss)计算其相对于模型参数的导数(如前一节所示),然后使用梯度下降优化模型的参数。

超参数

超参数是可调的参数,我们可以通过调整超参数来控制模型优化过程:超参数取不同值可能会影响模型训练和收敛速度。

我们为模型的训练定义以下超参数:

learning_rate = 1e-3
batch_size = 64
epochs = 10
  • Epochs:遍历整个数据集的次数
  • Batch Size:更新参数之前输入模型的数据样本数
  • 学习率(Learning Rate):在每个批次/epoch更新模型参数的程度。小的学习率会导致学习速度较慢,而较大的值可能会导致模型不收敛。

循环优化

一旦我们设置了超参数,我们就可以通过循环优化来训练和优化我们的模型。优化循环的每次迭代称为一个epoch

每个epoch由两个主要部分组成:

(1) 训练循环(The Train Loop):迭代训练数据集,尝试着让模型参数收敛到最佳参数。

在训练环节中,优化分为三个步骤:

  • 调用optimizer.zero_grad()重置模型参数的梯度。默认情况下,梯度是累加的;为了防止重复计数,我们在每次迭代时显式地将它们归零。
  • 通过调用loss.backward()对预测损失进行反向传播。PyTorch将存储损失关于每个参数的梯度。
  • 一旦我们得到了梯度,我们就调用optimizer.step(),这将通过在反向传播中收集的梯度来调整参数。

def train_loop(dataloader, model, loss_fn, optimizer):
    '''训练循环'''
    size = len(dataloader.dataset)
    for batch, (X, y) in enumerate(dataloader):
        X = X.to(device)
        y = y.to(device)
        # 计算估计值与损失
        pred = model(X)
        loss = loss_fn(pred, y)

        # 反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if batch % 100 == 0:
            loss, current = loss.item(), batch * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")

(2) 验证/测试循环(The Validation/Test Loop):迭代测试数据集,检查模型性能是否正在改善。


def test_loop(dataloader, model, loss_fn):
    '''测试循环'''
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    test_loss, correct = 0, 0

    with torch.no_grad():  
        for X, y in dataloader:
            X = X.to(device)
            y = y.to(device)
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()

    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100 * correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

让我们简单地熟悉一下上文训练循环中使用的一些概念。

损失函数

当输入一些训练数据时,未经训练的网络可能无法输出正确的答案。损失函数衡量估计值与目标值的差距,我们希望在训练过程中最小化损失。为了计算损失,我们使用给定数据样本作为输入进行预测,并将其与真实数据标签值进行比较。

常见的损失函数包括回归任务的nn.MSELoss(均方误差)和用于分类的 nn.NLLLoss(负对数似然)。nn.CrossEntropyLossnn.LogSoftmaxnn.NLLLoss合成。(在后续文章再详细介绍。)

我们将模型的输出逻辑传递给nn.CrossEntropyLoss,它将规范化logits(模型的输出)并计算预测误差。

loss_fn = nn.CrossEntropyLoss()

优化器

优化是在每个训练步骤中调整模型参数以减少模型误差的过程。优化算法指定如何执行该过程(在本例中,我们使用随机梯度下降)。所有优化逻辑都封装在优化器对象中。这里,我们使用SGD优化器;此外,Pytorch中有许多不同的优化器,如Adam和RMSProp。(在后续文章再详细介绍。)

我们通过传递所需要训练的模型参数和学习率参数来初始化优化器。

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

完整实现

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda

device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)

# ======================= 数据 =======================
training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)

train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)


# ======================= 模型 =======================
class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()

        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28 * 28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
        )

    def forward(self, x):
        x = x.flatten(1)
        logits = self.linear_relu_stack(x)
        return logits


def train_loop(dataloader, model, loss_fn, optimizer):
    '''训练循环'''
    size = len(dataloader.dataset)
    for batch, (X, y) in enumerate(dataloader):
        X = X.to(device)
        y = y.to(device)
        # 计算估计值与损失
        pred = model(X)
        loss = loss_fn(pred, y)

        # 反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if batch % 100 == 0:
            loss, current = loss.item(), batch * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")

def test_loop(dataloader, model, loss_fn):
    '''测试循环'''
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    test_loss, correct = 0, 0

    with torch.no_grad():
        for X, y in dataloader:
            X = X.to(device)
            y = y.to(device)
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()

    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100 * correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

# 超参数 
learning_rate = 1e-3
batch_size = 64
epochs = 10

# 模型实例
model = NeuralNetwork().to(device)
# 损失函数实例
loss_fn = nn.CrossEntropyLoss()
# 优化器实例
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

for t in range(epochs):
    print(f"Epoch {t + 1}\n-------------------------------")
    train_loop(train_dataloader, model, loss_fn, optimizer)
    test_loop(test_dataloader, model, loss_fn)
print("Done!")

参考:
[1] https://pytorch.org/tutorials/beginner/basics/optimization_tutorial.html

相关文章
|
20天前
|
机器学习/深度学习 搜索推荐 PyTorch
基于昇腾用PyTorch实现传统CTR模型WideDeep网络
本文介绍了如何在昇腾平台上使用PyTorch实现经典的WideDeep网络模型,以处理推荐系统中的点击率(CTR)预测问题。
186 66
|
4天前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
106 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
4月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
607 2
|
2月前
|
机器学习/深度学习 人工智能 PyTorch
使用PyTorch实现GPT-2直接偏好优化训练:DPO方法改进及其与监督微调的效果对比
本文将系统阐述DPO的工作原理、实现机制,以及其与传统RLHF和SFT方法的本质区别。
103 22
使用PyTorch实现GPT-2直接偏好优化训练:DPO方法改进及其与监督微调的效果对比
|
1月前
|
机器学习/深度学习 并行计算 PyTorch
TorchOptimizer:基于贝叶斯优化的PyTorch Lightning超参数调优框架
TorchOptimizer 是一个基于贝叶斯优化方法的超参数优化框架,专为 PyTorch Lightning 模型设计。它通过高斯过程建模目标函数,实现智能化的超参数组合选择,并利用并行计算加速优化过程。该框架支持自定义约束条件、日志记录和检查点机制,显著提升模型性能,适用于各种规模的深度学习项目。相比传统方法,TorchOptimizer 能更高效地确定最优超参数配置。
123 7
|
2月前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
85 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
3月前
|
监控 PyTorch 数据处理
通过pin_memory 优化 PyTorch 数据加载和传输:工作原理、使用场景与性能分析
在 PyTorch 中,`pin_memory` 是一个重要的设置,可以显著提高 CPU 与 GPU 之间的数据传输速度。当 `pin_memory=True` 时,数据会被固定在 CPU 的 RAM 中,从而加快传输到 GPU 的速度。这对于处理大规模数据集、实时推理和多 GPU 训练等任务尤为重要。本文详细探讨了 `pin_memory` 的作用、工作原理及最佳实践,帮助你优化数据加载和传输,提升模型性能。
212 4
通过pin_memory 优化 PyTorch 数据加载和传输:工作原理、使用场景与性能分析
|
4月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
124 7
利用 PyTorch Lightning 搭建一个文本分类模型
|
4月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
291 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
4月前
|
机器学习/深度学习 算法 数据可视化
如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
71 1

热门文章

最新文章