【MMAsia 2021】Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

简介:

@[toc]

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

https://arxiv.org/abs/2110.09109

这篇论文使用深度自编码器,提出了一种基于分块(patch)的有损点云几何压缩模型。与现有的点云压缩网络(在整个原始点云上应用特征提取和重建)不同,该模型通过采样和KNN操作将输入点云划分为多个小块并独立地压缩处理。最终的完整点云由解压缩后的各个小块组合得到。此外,作者使用分块的局部重建损失训练整个模型,以逼近最优的全局重建性能。使用分块来训练模型有两个优点:

  • 首先,由于分块已经是点云的局部区域,因此网络模型不需要使用多个集合抽象层堆栈来捕获局部细节,从而降低了训练模型的复杂性。
  • 其次,将点云划分成块增强了训练数据,这可以避免过拟合问题,提高模型预测精度。

在点云压缩任务中,该模型可以保证重建的点云与输入点云的点数相同,有很好的率失真性能(尤其是在低比特率下)。此外,还可以通过调整重建点云的点数将该模型应用于其他点云重建任务,例如点云上采样。

传送门

实验结果

Visualization of Training Process

Compression Performance Comparison

Influence of Patch Count on Compression Performance

Application to Point Cloud Upsampling

相关文章
|
3月前
|
机器学习/深度学习 算法
|
5月前
|
算法 数据挖掘
文献解读-Consistency and reproducibility of large panel next-generation sequencing: Multi-laboratory assessment of somatic mutation detection on reference materials with mismatch repair and proofreading deficiency
Consistency and reproducibility of large panel next-generation sequencing: Multi-laboratory assessment of somatic mutation detection on reference materials with mismatch repair and proofreading deficiency,大panel二代测序的一致性和重复性:对具有错配修复和校对缺陷的参考物质进行体细胞突变检测的多实验室评估
48 6
文献解读-Consistency and reproducibility of large panel next-generation sequencing: Multi-laboratory assessment of somatic mutation detection on reference materials with mismatch repair and proofreading deficiency
|
6月前
|
机器学习/深度学习 算法
【文献学习】Channel Estimation Method Based on Transformer in High Dynamic Environment
一种基于CNN和Transformer的信道估计方法,用于在高度动态环境中跟踪信道变化特征,并通过实验结果展示了其相比传统方法的性能提升。
85 0
|
9月前
|
算法 BI 计算机视觉
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
87 1
|
人工智能 编解码 自然语言处理
论文解读:Inpaint Anything: Segment Anything Meets Image Inpainting
论文解读:Inpaint Anything: Segment Anything Meets Image Inpainting
473 0
|
机器学习/深度学习 自然语言处理 算法
SS-AGA:Multilingual Knowledge Graph Completion with Self-Supervised Adaptive Graph Alignment 论文解读
预测知识图(KG)中缺失的事实是至关重要的,因为现代知识图远未补全。由于劳动密集型的人类标签,当处理以各种语言表示的知识时,这种现象会恶化。
125 0
|
机器学习/深度学习 自然语言处理 算法
TPLinker: Single-stage Joint Extraction of Entities and Relations Through Token Pair Linking 论文解读
近年来,从非结构化文本中提取实体和关系引起了越来越多的关注,但由于识别共享实体的重叠关系存在内在困难,因此仍然具有挑战性。先前的研究表明,联合学习可以显著提高性能。然而,它们通常涉及连续的相互关联的步骤,并存在暴露偏差的问题。
240 0
|
机器学习/深度学习 PyTorch 算法框架/工具
【多任务学习】Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
【多任务学习】Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
977 0
【多任务学习】Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
|
机器学习/深度学习 人工智能 自然语言处理
【计算机视觉】CORA: Adapting CLIP for Open-Vocabulary Detection with Region Prompting and Anchor Pre-Matching
CORA 在目标检测任务中提出了一种新的 CLIP 预训练模型适配方法,主要包括 Region Prompting 和 Anchor Pre-Matching 两部分。 这种方法能够让 CLIP 模型适应目标检测的任务,能够识别出图像中的对象,并提供准确的分类和定位信息。
1003 0
PointNet++:Deep Hierarchical Feature Learning on Points Sets in a Metrci Space 学习笔记
PointNet++:Deep Hierarchical Feature Learning on Points Sets in a Metrci Space 学习笔记
96 0