Looper 需要手动 quit,那主线程 Looper 呢?

简介: Looper 需要手动 quit,那主线程 Looper 呢?

我们都清楚自行启动 Looper 的线程,在任务结束时需要手动调用 quit() 或 quitSafely() 终止 Looper 轮循。但对于其中细节似乎没有仔细思考过,抽上五分钟简要学习下!


Looper 线程为什么要手动 quit?

quit 时 Message 们怎么处置?

quitSafely 做了哪些优化?

主线程 Looper 需要 quit 吗?

Looper 线程为什么要手动 quit?

创建 Looper 并执行 loop() 的线程在任务结束的时候,需要手动调用 quit。


反之,线程将由于 loop() 的轮询一直处于可运行状态,CPU 资源无法释放。更有可能因为 Thread 作为 GC Root 持有超出生命周期的实例引发内存泄漏。


当 quit 调用后,Looper 不再因为没有 Message 去等待,而是直接取到为 null 的 Message,这将触发轮循死循环的退出。

// Looper.java
    public static void loop() {
        ...
        for (;;) {
            Message msg = queue.next();
            if (msg == null) {
                // 拿到 null 则退出
                return;
            }
            ...
        }
    }

quit 时 Message 们怎么处置?

Looper 的很多处理实则都是 MessageQueue 在发挥作用,包括这里的 Looper#quit()。它其实是调用 MessageQueue 的同名函数 quit(boolean),并指定 safe 参数为 false

// Looper.java
    public void quit() {
        // 默认是不安全的退出
        mQueue.quit(false);
    }

MessageQueue#quit() 则主要执行几项简单工作,包括:标记正在退出,并清空所有未执行的 Mesage,最后唤醒线程。

// MessageQueue.java
    void quit(boolean safe) {
        ...
        synchronized (this) {
            ...
            mQuitting = true; // 标记 quitting
            // 不安全的退出将回收队列中所有 Message,并清空队列
            if (safe) {
                removeAllFutureMessagesLocked();
            } else {
                removeAllMessagesLocked();
            }
            // 唤醒线程
            nativeWake(mPtr);
        }
    }
  1. 退出的标记将导致后续的 sendMessage()postRunnable() 失效,直接返回 false
// MessageQueue.java
    boolean enqueueMessage(Message msg, long when) {
        ...
        synchronized (this) {
            ...
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                // quitting flag 导致后续的 Message send 失败
                return false;
            }
            ...
        }
        return true;
    }
  1. 默认的策略是清空队列里所有 Message,包括时间正好抵达的 Message 都无法处理,不太友好安全
// MessageQueue.java
    // 一刀切:无论 when 是否抵达都出队
    // 可能当前时刻本该执行的 Message 也会被剔除,无法执行
    private void removeAllMessagesLocked() {
        Message p = mMessages;
        while (p != null) {
            Message n = p.next;
            p.recycleUnchecked();
            p = n;
        }
        mMessages = null;
    }
  1. 最后唤醒线程,进入读取队列的下一次循环,因为队列已无 Message,将直接返回 null。
// MessageQueue.java
    Message next() {
        ...
        for (;;) {
            ...
            synchronized (this) {
                ...
                // 队列已无 Message
                // 将因为行退出标志的存在直接返回 null
                if (mQuitting) {
                    dispose();
                    return null;
                }
                ...
            }
            ...
        }
    }
  1. loop() 拿到的 Message 为 null,死循环退出,线程结束。

quitSafely 做了哪些优化?

大家都知道 SDK 更推荐使用 quitSafely() 去终止 Looper,原因在于其只会剔除执行时刻 when 晚于当前调用时刻的 Message。


这样可以保证 quitSafely 调用的那刻,满足执行时间条件的 Message 继续保留在队列中,在都执行完毕才退出轮询。


调用 MessageQueue#quit(),并指定 safe 参数为 true。

// Looper.java
    public void quitSafely() {
        mQueue.quit(true);
    }
  1. 安全 quit 的时候调用 removeAllFutureMessagesLocked()
// MessageQueue.java
    void quit(boolean safe) {
        synchronized (this) {
            if (safe) {
                // 安全退出的调用
                removeAllFutureMessagesLocked();
            } else {
                removeAllMessagesLocked();
            }
            nativeWake(mPtr);
        }
    }

顾名思义, 其只会移除未来 Message。※未来是 when 相较于当前时刻而言,不是没执行的都叫作未来,不要误解!

// MessageQueue.java
    private void removeAllFutureMessagesLocked() {
        final long now = SystemClock.uptimeMillis();
        Message p = mMessages;
        if (p != null) {
            // 如果队首 Message 的执行时刻仍晚于当前时刻,那么全部清空
            if (p.when > now) {
                removeAllMessagesLocked();
            } else {
                // 否则遍历队列,筛选需要剔除的 Message
                Message n;
                for (;;) {
                    n = p.next;
                    // 没有更晚的 Message,均不需要剔除,直接返回
                    if (n == null) {
                        return;
                    }
                    // 找到队列中最前一个晚于当前时刻的 Message
                    if (n.when > now) {
                        break;
                    }
                    p = n;
                }
                // 前一个 Message 后全部出队
                p.next = null;
                // 将最前一个晚于当前时刻的 Message 及之后的 Message 回收
                do {
                    p = n;
                    n = p.next;
                    p.recycleUnchecked();
                } while (n != null);
            }
        }
    }
  1. 移除未来 Message 之后唤醒线程的 next() 循环,其将取出留在队列里的 Message 进行处理。
    Message next() {
        ...
        for (;;) {
            ...
            synchronized (this) {
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                ...
                if (msg != null) {
                    // 队列里的 Message 早于当前时间,进入else
                    if (now < msg.when) {
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        mBlocked = false;                        
                        // Message 出队并更新指向
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            // 队首后移一个节点
                            mMessages = msg.next;
                        }
                        // 拿到了 Message,并交给 Looper 回调
                        msg.next = null;
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    ...
                }
                // 队列里仍残存 Message
                // 暂时不会因为退出标志返回 null
                if (mQuitting) {
                    dispose();
                    return null;
                }
            }
            ...
        }
    }
  1. 等残存 Message 都执行完了,下一次轮询的 next() 将取不到 Message,最终因为 quitting flag 返回 null,进而触发 loop() 死循环的退出。

主线程 Looper 需要 quit 吗?

主线程 ActivityThread 创建 Looper 时指定了不允许 quit 的标志,即不可以手动调用 quit。

// Looper.java
    public static void prepareMainLooper() {
        prepare(false);
        ...
    }
    private static void prepare(boolean quitAllowed) {
        ...
        sThreadLocal.set(new Looper(quitAllowed));
    }
    // Main Looper 初始化的时候指定了不允许退出
    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        ...
    }

如果强行在主线程里调用了 quit(),会发生如下异常:

java.lang.IllegalStateException: Main thread not allowed to quit.

// MessageQueue.java
    void quit(boolean safe) {
        if (!mQuitAllowed) {
            throw new IllegalStateException("Main thread not allowed to quit.");
        }
        ...
    }

那主线程需要 quit 吗?


不需要,在内存不足的时候 App 由 AMS 直接回收进程。


不需要 quit 的原因在于?


主线程极为重要,承载着 ContentProvider、Activity、Service 等组件生命周期的管理,即便某个组件结束了,它仍有继续存在去调度其他组件的必要!


换言之,ActivityThread 的作用域超过了这些组件,不该由这些组件去处理它的结束。 比如,Activity destroy 了,ActivityThread 仍然要处理其他 Activity 或 Service 等组件的事务,不能结束。

结语

基于回收资源或避免内存泄漏的考虑,在 Thread 完成任务后应当手动 quit。而为了确保 quit 时本可以执行的 Message 能安全执行,尽量调用 quitSafely。同时搞清楚主线程 Looper 的重要性,不需要也不可以被手动 quit!

相关文章
|
6天前
|
Python
|
8天前
|
Java 数据库
【Java多线程】对线程池的理解并模拟实现线程池
【Java多线程】对线程池的理解并模拟实现线程池
20 1
|
1天前
|
设计模式 安全 Java
【Linux 系统】多线程(生产者消费者模型、线程池、STL+智能指针与线程安全、读者写者问题)-- 详解
【Linux 系统】多线程(生产者消费者模型、线程池、STL+智能指针与线程安全、读者写者问题)-- 详解
|
1天前
|
安全 算法 Linux
【Linux 系统】多线程(线程控制、线程互斥与同步、互斥量与条件变量)-- 详解(下)
【Linux 系统】多线程(线程控制、线程互斥与同步、互斥量与条件变量)-- 详解(下)
|
1天前
|
存储 Linux 程序员
【Linux 系统】多线程(线程控制、线程互斥与同步、互斥量与条件变量)-- 详解(中)
【Linux 系统】多线程(线程控制、线程互斥与同步、互斥量与条件变量)-- 详解(中)
|
1天前
|
缓存 Linux 调度
【Linux 系统】多线程(线程控制、线程互斥与同步、互斥量与条件变量)-- 详解(上)
【Linux 系统】多线程(线程控制、线程互斥与同步、互斥量与条件变量)-- 详解(上)
|
2天前
|
安全 Java 调度
深入探索Java中的多线程编程与线程安全
多线程编程是Java编程中的一大特色,它允许多个线程并发执行,提高程序的执行效率。然而,多线程编程也带来了线程安全的问题,即如何确保多个线程在访问共享数据时不会发生冲突或数据不一致。本文将深入探讨Java中的多线程编程机制,包括线程的创建、启动、同步与通信,并着重分析线程安全的概念、常见的线程安全问题以及解决策略,旨在帮助读者理解并应用Java多线程编程的精髓。
|
2天前
|
缓存 NoSQL 中间件
【后端面经】【缓存】36|Redis 单线程:为什么 Redis 用单线程而 Memcached 用多线程?epoll、poll和select + Reactor模式
【5月更文挑战第19天】`epoll`、`poll`和`select`是Linux下多路复用IO的三种方式。`select`需要主动调用检查文件描述符,而`epoll`能实现回调,即使不调用`epoll_wait`也能处理就绪事件。`poll`与`select`类似,但支持更多文件描述符。面试时,重点讲解`epoll`的高效性和`Reactor`模式,该模式包括一个分发器和多个处理器,用于处理连接和读写事件。Redis采用单线程模型结合`epoll`的Reactor模式,确保高性能。在Redis 6.0后引入多线程,但基本原理保持不变。
21 2
|
3天前
|
缓存 NoSQL Redis
【后端面经】【缓存】36|Redis 单线程:为什么 Redis 用单线程而 Memcached 用多线程?--epoll调用和中断
【5月更文挑战第18天】`epoll`包含红黑树和就绪列表,用于高效管理文件描述符。关键系统调用有3个:`epoll_create()`创建epoll结构,`epoll_ctl()`添加/删除/修改文件描述符,`epoll_wait()`获取就绪文件描述符。`epoll_wait()`可设置超时时间(-1阻塞,0立即返回,正数等待指定时间)。当文件描述符满足条件(如数据到达)时,通过中断机制(如网卡或时钟中断)更新就绪列表,唤醒等待的进程。
32 6
|
4天前
|
NoSQL Redis 缓存
【后端面经】【缓存】36|Redis 单线程:为什么 Redis 用单线程而 Memcached 用多线程?
【5月更文挑战第17天】Redis常被称为单线程,但实际上其在处理命令时采用单线程,但在6.0后IO变为多线程。持久化和数据同步等任务由额外线程处理,因此严格来说Redis是多线程的。面试时需理解Redis的IO模型,如epoll和Reactor模式,以及其内存操作带来的高性能。Redis使用epoll进行高效文件描述符管理,实现高性能的网络IO。在讨论Redis与Memcached的线程模型差异时,应强调Redis的单线程模型如何通过内存操作和高效IO实现高性能。
33 7
【后端面经】【缓存】36|Redis 单线程:为什么 Redis 用单线程而 Memcached 用多线程?