python--转换wrf输出的风场数据为网页可视化的json格式

简介: python--转换wrf输出的风场数据为网页可视化的json格式

前言:



  • 一般网页可视化风场中的数据都是json格式,而如果我们希望将wrf模式模拟输出的风场数据在网页中进行展示,这就需要先将wrfoutput数据转换为网页可以识别的json格式。


  • 这里主要需要用到json库,主要的实现方式就是将读取的风场风量U,V转换为字典并存到json文件中


  • 同时,由于wrf模拟的数据一般是非等间距的网格,需要先将数据进行插值,插值到等间距的网格,这里可以通过NCL的函数rcm2rgrid_Wrap实现


举个例子,将模式中设置为兰伯特投影的网格:


857bf7449d064bd58d84d985a0aa615c.png

插值为等间距网格:


c6277bf58fc64a2d821e568b70b191fd.png

主要的编程分为两部分:

  • 第一部分通过NCL脚本将wrfout数据转换为等间距网格,并导出为netcdf格式;
  • 第二部分通过python脚本将第一步导出的nc格式进行转换,并保存输出为json格式。


NCL插值脚本1


  • 需要修改的就是路径和变量,我下面展示脚本不仅有风场数据u,v还有降水,海表面压力,气温等,可自行修改


begin
  a = addfile("/Users/WRF/outdata/2022071000/wrfout_d01_2022-07-10_01:00:00","r")
  lat2d = a->XLAT(0,:,:)
  lon2d = a->XLONG(0,:,:)
  lat1d = lat2d(:,0)
  lon1d = lon2d(0,:)
  time = wrf_user_getvar(a,"XTIME",-1)
  u10 = wrf_user_getvar(a,"U10",0)
  v10 = wrf_user_getvar(a,"V10",0)
  slp = wrf_user_getvar(a,"slp",0)
  t2  = wrf_user_getvar(a,"T2",0)
  td  = wrf_user_getvar(a,"td",0)
  rainc = wrf_user_getvar(a,"RAINC",0)
  rainnc = wrf_user_getvar(a,"RAINNC",0)
  u10@lat2d = lat2d
  u10@lon2d = lon2d
  u10_ip = rcm2rgrid_Wrap(lat2d,lon2d,u10,lat1d,lon1d,0)
  v10@lat2d = lat2d
  v10@lon2d = lon2d
  v10_ip = rcm2rgrid_Wrap(lat2d,lon2d,v10,lat1d,lon1d,0)
  slp_ip  =   rcm2rgrid_Wrap(lat2d,lon2d,slp,lat1d,lon1d,0)
  t2_ip  =   rcm2rgrid_Wrap(lat2d,lon2d,t2,lat1d,lon1d,0)
  td_ip  =   rcm2rgrid_Wrap(lat2d,lon2d,td,lat1d,lon1d,0)
  rainc_ip  =   rcm2rgrid_Wrap(lat2d,lon2d,rainc,lat1d,lon1d,0)
  rainnc_ip  =   rcm2rgrid_Wrap(lat2d,lon2d,rainnc,lat1d,lon1d,0)
  outf = addfile("/Users/wrfout_d01_2022-07-10_01:00:00.nc","c")
  outf->time =  time
  outf->lat  =  lat2d
  outf->lon  =  lon2d
  outf->u10  =  u10_ip
  outf->v10  =  v10_ip
  outf->slp  =  slp_ip
  outf->t2   =  t2_ip
  outf->td   =  td_ip
  outf->rainc   =  rainc_ip
  outf->rainnc  =  rainnc_ip
end


上述脚本的缺点在于只能基于模式模拟的经纬度区域进行插值,意思就是说他的经纬度区域是固定的那么大


NCL插值脚本2


NCL还有一个函数可以实现上述过程,就是ESMF_regrid,该函数的优点在于可以实现任意经纬度范围的插值,但是不足在于对于存在高度层的变量,暂时无法进行高度层的数据读取。(也可能我水平有限不知道。。。。)这里也附上脚本:


load "$NCARG_ROOT/lib/ncarg/nclscripts/esmf/ESMF_regridding.ncl"
begin
  a = addfile("/Users/WRF/outdata/2022071000/wrfout_d01_2022-07-10_01:00:00","r")
  u10 = wrf_user_getvar(a,"U10",0)
  v10 = wrf_user_getvar(a,"V10",0)
  slp = wrf_user_getvar(a,"slp",0)
  t2  = wrf_user_getvar(a,"T2",0)
;  td  = wrf_user_getvar(a,"td",0)
  rainc = wrf_user_getvar(a,"RAINC",0)
  rainnc = wrf_user_getvar(a,"RAINNC",0)
  u10@lat2d = a->XLAT(0,:,:) 
  u10@lon2d = a->XLONG(0,:,:)
  v10@lat2d = a->XLAT(0,:,:) 
  v10@lon2d = a->XLONG(0,:,:)
  slp@lat2d = a->XLAT(0,:,:) 
  slp@lon2d = a->XLONG(0,:,:)
  t2@lat2d = a->XLAT(0,:,:) 
  t2@lon2d = a->XLONG(0,:,:)
;  td@lat2d = a->XLAT(0,:,:) 
;  td@lon2d = a->XLONG(0,:,:)
  rainc@lat2d = a->XLAT(0,:,:) 
  rainc@lon2d = a->XLONG(0,:,:)
  rainnc@lat2d = a->XLAT(0,:,:) 
  rainnc@lon2d = a->XLONG(0,:,:)
  lat2d = a->XLAT(0,:,:)
  lon2d = a->XLONG(0,:,:)
  lat1d = lat2d(:,0)
  lon1d = lon2d(0,:)
  latS = -20
  latN = 50
  lonW = 95
  lonE = 145
  Opt = True
  Opt@InterpMethod = "bilinear" 
  Opt@ForceOverwrite = True 
  Opt@SrcMask2D = where(.not. ismissing(v10),1,0) 
  Opt@DstGridType = "0.1deg"
  Opt@DstLLCorner = (/latS, lonW /) 
  Opt@DstURCorner = (/latN, lonE /) 
  u10_regrid = ESMF_regrid(u10,Opt)
  v10_regrid = ESMF_regrid(v10,Opt)
  slp_regrid = ESMF_regrid(slp,Opt)
  t2_regrid = ESMF_regrid(t2,Opt)
;  td_regrid = ESMF_regrid(td,Opt)
  rainc_regrid = ESMF_regrid(rainc,Opt)
  rainnc_regrid = ESMF_regrid(rainnc,Opt)
  time = wrf_user_getvar(a,"XTIME",-1)
  nlon = dimsizes(v10_regrid&lon)
  nlat = dimsizes(v10_regrid&lat)
  ofile = "wrfout_d01_2022-07-10_01:00:00.nc"
  system("rm -rf "+ofile) 
  fout = addfile(ofile,"c") 
  dimNames = (/"lat", "lon"/)
  dimSizes = (/nlat, nlon/)
  dimUnlim = (/False, False/)
  filedimdef(fout,dimNames,dimSizes,dimUnlim) ;-- define dimensions
  filevardef(fout,"lat",typeof(v10_regrid&lat),getvardims(v10_regrid&lat))
  filevardef(fout,"lon",typeof(v10_regrid&lon),getvardims(v10_regrid&lon))
  filevardef(fout,"u10",typeof(u10_regrid),getvardims(u10_regrid))
  filevardef(fout,"v10",typeof(v10_regrid),getvardims(v10_regrid))
  filevardef(fout,"slp",typeof(slp_regrid),getvardims(slp_regrid))
  filevardef(fout,"t2",typeof(t2_regrid),getvardims(t2_regrid))
;  filevardef(fout,"td",typeof(td_regrid),getvardims(td_regrid))
  filevardef(fout,"rainc",typeof(rainc_regrid),getvardims(rainc_regrid))
  filevardef(fout,"rainnc",typeof(rainnc_regrid),getvardims(rainnc_regrid))
  filevarattdef(fout,"lat",v10_regrid&lat) ;-- copy lat attributes
  filevarattdef(fout,"lon",v10_regrid&lon) ;-- copy lon attributes
  filevarattdef(fout,"u10",u10_regrid)
  filevarattdef(fout,"v10",v10_regrid)
  filevarattdef(fout,"slp",slp_regrid)
  filevarattdef(fout,"t2",t2_regrid)
;  filevarattdef(fout,"td",td_regrid)
  filevarattdef(fout,"rainc",rainc_regrid)
  filevarattdef(fout,"rainnc",rainnc_regrid)
  setfileoption(fout,"DefineMode",False)
  fout->u10 = (/u10_regrid/)
  fout->v10 = (/v10_regrid/) 
  fout->slp = (/slp_regrid/) 
  fout->t2 = (/t2_regrid/) 
;  fout->td = (/td_regrid/) 
  fout->rainc  = (/rainc_regrid/) 
  fout->rainnc = (/rainnc_regrid/) 
  fout->lat = (/v10_regrid&lat/) ;-- write lat to new netCDF file
  fout->lon = (/v10_regrid&lon/) ;-- write lon to new netCDF file
  fout->time =  time
end


PS:运行该脚本会生成四个nc文件,分别为:destination_grid_file.nc、source_grid_file.nc、weights_file.nc、wrfout_d01_2022-07-10_01:00:00.nc。其中,wrfout_d01_2022-07-10_01:00:00.nc是我需要的文件,但是其他三个文件如何在运行脚本的过程去掉暂未解决。


python格式转换脚本1


python脚本如下所示:


# -*- coding: utf-8 -*-
"""
Created on %(date)s
@author: %(jixianpu)s
Email : 211311040008@hhu.edu.cn
introduction : keep learning althongh walk slowly
"""
"""
用来读取用ncl插值后的wrfoutput.nc 数据,并生成对应文件名的json格式
"""
import pandas as pd
import os
import json
import netCDF4 as nc
import numpy as np
import  datetime
from netCDF4 import Dataset
import argparse
from argparse import RawDescriptionHelpFormatter
import xarray as xr
import sys
import glob
date = sys.argv[1]
date = str(date)
frst = sys.argv[2]
step = sys.argv[3]
path = r'/Users/WRF/outdata/2022071000/'#只能是已经存在的文件目录且有数据才可以进行读取
start = datetime.datetime.strptime(date,'%Y%m%d%H').strftime("%Y-%m-%d_%H:%M:%S")
end = (datetime.datetime.strptime(date,'%Y%m%d%H')+datetime.timedelta(hours=int(frst))).strftime("%Y-%m-%d_%H:%M:%S")
intp = (datetime.datetime.strptime(date,'%Y%m%d%H')+datetime.timedelta(hours=int(step))).strftime("%Y-%m-%d_%H:%M:%S")
fstart = path+'/wrfout_d01_'+start+'*'
fintp  = path+'/wrfout_d01_'+intp+'*'
fend   = path+'/wrfout_d01_'+end+'*'
file = path+'/*'
filestart = glob.glob(fstart)
fileintp  = glob.glob(fintp)
fileend   = glob.glob(fend)
filelist  = glob.glob(file)
filelist.sort()   
rstart = np.array(np.where(np.array(filelist)==filestart))[0][0]
rintp = np.array(np.where(np.array(filelist)==fileintp))[0][0]
rend   = np.array(np.where(np.array(filelist)==fileend))[0][0]
fn = filelist[rstart:rend:rintp]
outroot = 'Users/'    
for i in fn:
    uhdr = {"header":{"discipline":0,"disciplineName":"Meteorological products","gribEdition":2,"gribLength":131858,"center":0,"centerName":"WRF OUTPUT","subcenter":0,"refTime":"2014-01-31T00:00:00.000Z","significanceOfRT":1,"significanceOfRTName":"Start of forecast","productStatus":0,"productStatusName":"Operational products","productType":1,"productTypeName":"Forecast products","productDefinitionTemplate":0,"productDefinitionTemplateName":"Analysis/forecast at horizontal level/layer at a point in time","parameterCategory":2,"parameterCategoryName":"Momentum","parameterNumber":2,"parameterNumberName":"U-component_of_wind","parameterUnit":"m.s-1","genProcessType":2,"genProcessTypeName":"Forecast","forecastTime":3,"surface1Type":103,"surface1TypeName":"Specified height level above ground","surface1Value":10,"surface2Type":255,"surface2TypeName":"Missing","surface2Value":0,"gridDefinitionTemplate":0,"gridDefinitionTemplateName":"Latitude_Longitude","numberPoints":65160,"shape":6,"shapeName":"Earth spherical with radius of 6,371,229.0 m","gridUnits":"degrees","resolution":48,"winds":"true","scanMode":0,"nx":360,"ny":181,"basicAngle":0,"subDivisions":0,"lo1":0,"la1":90,"lo2":359,"la2":-90,"dx":1,"dy":1}}
    vhdr = {"header":{"discipline":0,"disciplineName":"Meteorological products","gribEdition":2,"gribLength":131858,"center":0,"centerName":"WRF OUTPUT","subcenter":0,"refTime":"2014-01-31T00:00:00.000Z","significanceOfRT":1,"significanceOfRTName":"Start of forecast","productStatus":0,"productStatusName":"Operational products","productType":1,"productTypeName":"Forecast products","productDefinitionTemplate":0,"productDefinitionTemplateName":"Analysis/forecast at horizontal level/layer at a point in time","parameterCategory":2,"parameterCategoryName":"Momentum","parameterNumber":3,"parameterNumberName":"V-component_of_wind","parameterUnit":"m.s-1","genProcessType":2,"genProcessTypeName":"Forecast","forecastTime":3,"surface1Type":103,"surface1TypeName":"Specified height level above ground","surface1Value":10,"surface2Type":255,"surface2TypeName":"Missing","surface2Value":0,"gridDefinitionTemplate":0,"gridDefinitionTemplateName":"Latitude_Longitude","numberPoints":65160,"shape":6,"shapeName":"Earth spherical with radius of 6,371,229.0 m","gridUnits":"degrees","resolution":48,"winds":"true","scanMode":0,"nx":360,"ny":181,"basicAngle":0,"subDivisions":0,"lo1":0,"la1":90,"lo2":359,"la2":-90,"dx":1,"dy":1}}
    data = [uhdr, vhdr]
    newf = Dataset(i)
    lat = np.array(newf.variables['lat'])
    # print(fn,lat)
    lon = np.array(newf.variables['lon'])
    dys = np.diff(lat, axis = 0).mean(1)
    dy = float(dys.mean())
    dxs = np.diff(lon, axis = 1).mean(0)
    dx = float(dxs.mean())
    nx = float(lon.shape[1])
    ny = float(lat.shape[0])
    la1 = float(lat[-1, -1])
    la2 = float(lat[0, 0])
    lo1 = float(lon[0, 0])
    lo2 = float(lon[-1, -1])
    time =(newf.variables['time'])
    dates = nc.num2date(time[:],units=time.units)
    dt = pd.to_datetime(np.array(dates, dtype='datetime64[s]')).strftime("%Y%m%d%H%M%S")
    tms =pd.to_datetime(np.array(dates, dtype='datetime64[s]')).strftime("%Y-%m-%d_%H:%M:%S")
    for ti, time in enumerate(dt):
        datestr = (dt[0][:8])
        timestr = (dt[0][8:10])+'00'
        dirpath = outroot + date
        os.makedirs(dirpath, exist_ok = True)
        outpath = os.path.join(dirpath, '%s.json' % (i[-19:]))
        for u0_or_v1 in [0, 1]:
            h = data[u0_or_v1]['header']
            h['la1'] = la1
            h['la2'] = la2
            h['lo1'] = lo1
            h['lo2'] = lo2
            h['nx'] = nx
            h['ny'] = ny
            h['dx'] = dx
            h['dy'] = dy
            h['forecastTime'] = 0
            h['refTime'] = tms[0] + '.000Z'
            h['gribLength'] = 1538 + nx * ny * 2
            if u0_or_v1 == 0:
                data[u0_or_v1]['data'] = np.array(newf.variables['u10']).ravel().tolist()
            elif u0_or_v1 == 1:
                data[u0_or_v1]['data'] = np.array(newf.variables['v10']).ravel().tolist()
        if ti == 0:
            outf = open(outpath, 'w')
            json.dump(data, outf)
            outf.close()
        outf = open(outpath, 'w')
        json.dump(data, outf)
        outf.close()


上述脚本为Linux系统下运行,运行方式如下:

python  xx.py 起报时间 时常 间隔


举个例子:

我的wrfout数据名称如下:


6879b5d6dc6c4db89ec94f6055a98299.png


python  convert_to_json.py 2022071000 12 06


根据你需要的模式起始时间,起报的时长(小时)以及预报的时间间隔(小时)进行自动化转换。


python 格式转换脚本2


当然,这里也准备了一个windows下的简易脚本,转换出的信息也比较简单,


# -*- coding: utf-8 -*-
"""
Created on %(date)s
@author: %(jixianpu)s
Email : 211311040008@hhu.edu.cn
introduction : keep learning althongh walk slowly
"""
from __future__ import print_function, unicode_literals
import pandas as pd
import os
import json
import netCDF4 as nc
import numpy as np
import  datetime
from netCDF4 import Dataset
import argparse
from argparse import RawDescriptionHelpFormatter
import xarray as xr
# parser = argparse.ArgumentParser(description = """
# """, formatter_class = RawDescriptionHelpFormatter)
args = r'J:/wrf自动化/wrfout_d01_2022-07-10_01_00_00.nc'
outroot = r'D:/'
uhdr = {"header":{
                  "nx":360,
                  "ny":181,
                  "max":11,
                  }}
data = [uhdr]
newf = Dataset(args)
lat = np.array(newf.variables['lat'])
lon = np.array(newf.variables['lon'])
u10 = np.array(newf.variables['u10'])
v10 = np.array(newf.variables['v10'])
# indx = u10>1000
# u10[indx] = np.nan
# v10[indx] = np.nan
w10 = np.nanmax(np.sqrt(u10*u10+v10*v10))
dys = np.diff(lat, axis = 0).mean(1)
dy =    float(dys.mean())
print('Latitude Error:', np.abs((dy / dys) - 1).max())
print('Latitude Sum Error:', (dy / dys - 1).sum())
dxs = np.diff(lon, axis = 1).mean(0)
dx =    float(dxs.mean())
print('Longitude Error:', np.abs(dx / dxs - 1).max())
print('Longitude Sum Error:', (dx / dxs - 1).sum())
nx =    float(lon.shape[1])
ny =    float(lat.shape[0])
la1 =    float(lat[-1, -1])
la2 =   float(lat[0, 0])
lo1 =   float(lon[0, 0])
lo2 =   float(lon[-1, -1])
time =(newf.variables['time'])
dates = nc.num2date(time[:],units=time.units)
dt = pd.to_datetime(np.array(dates, dtype='datetime64[s]')).strftime("%Y%m%d%H%M%S")
ds= {
                      "nx":360,
                      "ny":181,
                      "max":11,
                      # "lo1":0,
                      # "la1":90,
                      # "lo2":359,
                      # "la2":-90,
                      # "dx":1,
                      # "dy":1,
                      # "parameterUnit":"m.s-1",
                      'data':{}
        }
ds['max']   =    float(w10)
ds['nx']    =    (nx)
ds['ny']    =    (ny)
for ti, time in enumerate(dt):
    #2012/02/07/0100Z/wind/surface/level/orthographic=-74.01,4.38,29184
    datestr = (dt[0][:8])
    timestr = (dt[0][8:10])+'00'
    print('Add "#' + datestr + '/' + timestr + 'Z/wind/surface/level/orthographic" to url to see this time')
    dirpath = os.path.join('D:', *datestr.split('/'))
    os.makedirs(dirpath, exist_ok = True)
    outpath = os.path.join(dirpath, '%s-wind-surface-level-gfs-1.0.json' % (timestr,))
    udata=u10.ravel()
    data[0]['data']=[]
    for i in range(len(udata)):
        data[0]['data'].append([
        u10.ravel().tolist()[i],
        v10.ravel().tolist()[i]])
    ds['data'] = data[0]['data']
outf = open(outpath, 'w')
json.dump(ds,outf)
outf.close()


这个脚本正常放在编辑器里面运行即可。

运行完结束,会在你的输出路径下生成一个文件夹:


6aeb7311653142d29862dd01050fb593.png


里面有个json数据:


2d305d9d7cee44cab407d0fbcf873745.png


数据信息比较简单,只有nx(经度的大小),ny(纬度的大小)以及最大值:


image.png


ok,以上就是完整的过程,最终将得到的json数据通过.js脚本运行就可以部署到网页上了,简单试了一下,大概如下图所示,可以根据需要自行更改设置:


c1e2fec740204db19850066aa7dc30dd.png


水平有限,本人对于NCL脚本不太熟悉,可能有些代码写的比较复杂,欢迎指正!!!


            一个努力学习python的ocean er
              水平有限,欢迎指正!!!
              欢迎评论、收藏、点赞、转发、关注。
            关注我不后悔,记录学习进步的过程~~
相关文章
|
6天前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
从零开始:用Python爬取网站的汽车品牌和价格数据
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
1月前
|
JSON 前端开发 搜索推荐
关于商品详情 API 接口 JSON 格式返回数据解析的示例
本文介绍商品详情API接口返回的JSON数据解析。最外层为`product`对象,包含商品基本信息(如id、name、price)、分类信息(category)、图片(images)、属性(attributes)、用户评价(reviews)、库存(stock)和卖家信息(seller)。每个字段详细描述了商品的不同方面,帮助开发者准确提取和展示数据。具体结构和字段含义需结合实际业务需求和API文档理解。
|
30天前
|
JSON 缓存 API
解析电商商品详情API接口系列,json数据示例参考
电商商品详情API接口是电商平台的重要组成部分,提供了商品的详细信息,支持用户进行商品浏览和购买决策。通过合理的API设计和优化,可以提升系统性能和用户体验。希望本文的解析和示例能够为开发者提供参考,帮助构建高效、可靠的电商系统。
39 12
|
1月前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
2月前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
2月前
|
数据采集 存储 XML
python实战——使用代理IP批量获取手机类电商数据
本文介绍了如何使用代理IP批量获取华为荣耀Magic7 Pro手机在电商网站的商品数据,包括名称、价格、销量和用户评价等。通过Python实现自动化采集,并存储到本地文件中。使用青果网络的代理IP服务,可以提高数据采集的安全性和效率,确保数据的多样性和准确性。文中详细描述了准备工作、API鉴权、代理授权及获取接口的过程,并提供了代码示例,帮助读者快速上手。手机数据来源为京东(item.jd.com),代理IP资源来自青果网络(qg.net)。
|
4月前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
3月前
|
JSON API 数据安全/隐私保护
拍立淘按图搜索API接口返回数据的JSON格式示例
拍立淘按图搜索API接口允许用户通过上传图片来搜索相似的商品,该接口返回的通常是一个JSON格式的响应,其中包含了与上传图片相似的商品信息。以下是一个基于淘宝平台的拍立淘按图搜索API接口返回数据的JSON格式示例,同时提供对其关键字段的解释
|
3月前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。

热门文章

最新文章

推荐镜像

更多