python 绘图时显示不同的数学符号alpha,beta,偏导、求和等等

简介: 在使用python进行绘图时,当涉及当一些数学计算时,常常需要为我们的x、y轴以及标题添加标签,而一些特殊的数学计算符号往往在键盘上无法找到。特此,为了以后寻找方面,将一些常用的数学计算符号等进行汇总:

在使用python进行绘图时,当涉及当一些数学计算时,常常需要为我们的x、y轴以及标题添加标签,而一些特殊的数学计算符号往往在键盘上无法找到。特此,为了以后寻找方面,将一些常用的数学计算符号等进行汇总:


d143ad8ceab94b32b388b8fa08174ae0.png

使用的方法也很简单,下面举一个在标题添加偏导符号的例子:


import matplotlib.pyplot as plt
import numpy as np
#data
x=np.arange(0,101)
y=x
#draw
fig=plt.figure(figsize=(10,5))
ax=fig.add_subplot(111)
ax.plot(x,y)
ax.set_title('$\partial y $/$\partial x $',fontsize=15)


cc6b0e79abc14c6b9909c1b496e181b7.png


结果很理想,是不是很有意思呢~

下面附上各种符号的设置的代码:


0 $W^{3\beta}_{\delta_1 \rho_1 \sigma_2} = U^{3\beta}_{\delta_1 \rho_1} + \frac{1}{8 \pi 2} \int^{\alpha_2}_{\alpha_2} d \alpha^\prime_2 \left[\frac{ U^{2\beta}_{\delta_1 \rho_1} - \alpha^\prime_2U^{1\beta}_{\rho_1 \sigma_2} }{U^{0\beta}_{\rho_1 \sigma_2}}\right]$
1 $\alpha_i > \beta_i,\ \alpha_{i+1}^j = {\rm sin}(2\pi f_j t_i) e^{-5 t_i/\tau},\ \ldots$
2 $\frac{3}{4},\ \binom{3}{4},\ \stackrel{3}{4},\ \left(\frac{5 - \frac{1}{x}}{4}\right),\ \ldots$
3 $\sqrt{2},\ \sqrt[3]{x},\ \ldots$
4 $\mathrm{Roman}\ , \ \mathit{Italic}\ , \ \mathtt{Typewriter} \ \mathrm{or}\ \mathcal{CALLIGRAPHY}$
5 $\acute a,\ \bar a,\ \breve a,\ \dot a,\ \ddot a, \ \grave a, \ \hat a,\ \tilde a,\ \vec a,\ \widehat{xyz},\ \widetilde{xyz},\ \ldots$
6 $\alpha,\ \beta,\ \chi,\ \delta,\ \lambda,\ \mu,\ \Delta,\ \Gamma,\ \Omega,\ \Phi,\ \Pi,\ \Upsilon,\ \nabla,\ \aleph,\ \beth,\ \daleth,\ \gimel,\ \ldots$
7 $\coprod,\ \int,\ \oint,\ \prod,\ \sum,\ \log,\ \sin,\ \approx,\ \oplus,\ \star,\ \varpropto,\ \infty,\ \partial,\ \Re,\ \leftrightsquigarrow, \ \ldots$


可以对照着查找相关需要的符号~,感兴趣的小伙伴快去尝试一下吧!

官网链接:Mathtext Examples

相关文章
|
11月前
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
1316 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
11月前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
408 8
|
11月前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
2570 7
|
数据可视化 Python
Python 高级绘图:探索数据可视化
在Python中,利用matplotlib、seaborn等库可实现数据的可视化。matplotlib功能丰富,支持基础图表绘制;seaborn则提供了更美观的默认样式。此外,matplotlib还支持3D图形及动态图表的生成,满足多样化的数据展示需求。 示例代码展示了如何使用这些库绘制正弦波、散点图、3D曲面图及动态更新的折线图。通过numpy生成数据,并借助matplotlib与seaborn的强大绘图功能,实现数据的直观呈现。
204 17
|
机器学习/深度学习 数据采集 算法
数据稀缺条件下的时间序列微分:符号回归(Symbolic Regression)方法介绍与Python示例
有多种方法可以处理时间序列数据中的噪声。本文将介绍一种在我们的研究项目中表现良好的方法,特别适用于时间序列概况中数据点较少的情况。
374 1
数据稀缺条件下的时间序列微分:符号回归(Symbolic Regression)方法介绍与Python示例
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
341 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
|
机器学习/深度学习 算法 C语言
【Python】Math--数学函数(详细附解析~)
【Python】Math--数学函数(详细附解析~)
|
iOS开发 MacOS Python
Python编程-macOS系统数学符号快捷键录入并生成csv文件转换为excel文件
Python编程-macOS系统数学符号快捷键录入并生成csv文件转换为excel文件
138 1
|
数据可视化 Python
Python 高级绘图:从基础到进阶的可视化实践
本文介绍了使用 Python 的强大绘图库 matplotlib 实现多种图表绘制的方法,包括简单的折线图、多条折线图、柱状图、饼图、散点图及 3D 图的绘制。通过具体代码示例展示了如何设置轴标签、标题、图例等元素,并指出了 matplotlib 支持更多高级绘图功能。来源:https://www.wodianping.com/app/2024-10/47112.html。
361 0
|
数据可视化 数据挖掘 Linux
10幅必须掌握的Seaborn绘图
10幅必须掌握的Seaborn绘图
337 0

推荐镜像

更多
下一篇
oss云网关配置