敢说 Apache Ignite 比 Tachyon 好?删帖!

简介:

编者说:本文的原作者在网上发表了 Apache Ignite 与 Tachyon 优劣的言论后,竟然发现帖子被无情的删除了,于是他贴出了与 Google 团队成员交流的邮件,顺便写下了下面的文章以表达愤懑之情。关于被删帖一事可点击此处查看。

在我发布 Apache Ignite (孵化中) 和 Tachyon 缓存项目之间差异说明之后,竟然发现文章被删除了。同时,我收到一份来自 Google 团队一名叫 tachyon-user 的私人邮件,上面解释了为什么文章“会被当做营销信息”而删除。

看来所有带有轻微批评 Tachyon 项目的信息都会被当做“营销信息”并且以真正“自由和开放“的名义删除掉!这个社区好像哪里搞错了。所以,我决定贴上曾经被他们退回的原始邮件。

你们自己判断:

From:kboudnik@gmail.com

Date:Fri,Apr 10,2015 at 11 : 46 PM

Subject:RE:Apache Ignite vs Tachyon

To:tachyon-user@googlegroups.com

实际上,你只是部分正确。

Apache Ignite 是一个发展成熟的内存计算(IMC)平台(又名数据结构)。 “支持 Hadoop 生态系统”只是结构的一个组成部分。它包括两个部分:-文件系统缓存:让 HDFS IO 性能显著提升的完全透明的缓存。从某种程度上说,这个和Tachyon 所要实现的功能相似。不像 Tacyon,Apache Ignite 缓存数据是更大的数据结构的一个组成部分,可以被任何 Ignite 服务使用。

  • MR 加速器可以在 Ignite 内存引擎上运行“经典”的 MR 任务。基本上,Ignite MR (大量 SQL 列表和其他计算组件)是一个将数据储存在集群内存的方式。我会说 Ignite MT 比 Hadoop MR 快30倍(也就是 3000%)吗?顺便说下,它还不需要改变代码。

当你说“Tachyon...支持本地大数据堆栈”的时候,你应该要明白,Ignite Hadoop 加速也是支持本地化的:你可以在 IgniteFS 顶层运行 MR,Hive,HBase,Spark 等等,而且不需要改变任何事情。

顺 便截取一段给你看看:在 Ignite 系统文件缓存是“数据结构”范例的一部分,就像服务、高级集群、分布式消息、ACID 实时交易一样。加 HDFS 和 MR 加速层是很直接的,因为它们建立于高级的 Ignite 核心,而此核心已经实际运行了5年以上。不过,当你开始使用如 Tachyon 这样的内存文件系统,你会发现他很难实现相同企业级的计算。 没有任何抨击,就像刚才说的。

我建议你去看看 ignite.incubator.apache.org:读下文档,试着使用1.0版本的 Ignite ,下载:https://dist.apache.org/repos/dist/release/incubator/ignite/1.0.0/(安装很容易),然后加入我们的 Apache 社区。如果你有兴趣通过 Ignite 使用 Hadoop, Apache Bigtop 会给你一整套软件,包括无缝的集群部署,它能让你在几分钟之内开启全功能集群。

再透露下:我是 Apache 孵化器 Ignite 项目的导师。

Best regards,

Konstantin Boudnik

On Thursday, April 9, 2015 at 7:39:00 PM UTC-7, Pengfei Xuan wrote:

我所理解的, Apache Ignite (GridGain) 从传统的成长

Posted by Cos at 18:51

Source:drcos.boudnik.org
文章转载自 开源中国社区 [http://www.oschina.net]

相关文章
|
存储 缓存 监控
Java一分钟之-Apache Ignite:分布式内存计算平台
【5月更文挑战第21天】Apache Ignite是一款开源的分布式内存计算平台,涉及内存数据网格、流处理和计算服务。本文关注其常见问题,如数据丢失、分区不均、内存管理和网络延迟。为保证数据一致性,建议使用适当的數據模式和备份策略,实现数据持久化。优化内存配置和监控网络可提升性能与稳定性。提供的Java代码示例展示了如何创建分区缓存并设置备份。正确配置和管理Ignite是构建高可用、高性能应用的关键,持续监控集群状态至关重要。
426 0
|
SQL 存储 大数据
Apache Ignite剖析
1.概述   Apache Ignite和Apache Arrow很类似,属于大数据范畴中的内存分布式管理系统。在《Apache Arrow 内存数据》中介绍了Arrow的相关内容,它统一了大数据领域各个生态系统的数据格式,避免了序列化和反序列化所带来的资源开销(能够节省80%左右的CPU资源)。
7858 0
|
机器学习/深度学习 存储 分布式计算
结合Apache Ignite探索机器学习
Apache Ignite新版本发布,支持机器学习和深度学习!
6066 0
|
缓存 Apache 分布式计算
|
15天前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
194 14
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
9月前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
675 33
The Past, Present and Future of Apache Flink

热门文章

最新文章

推荐镜像

更多