深度学习:ResNet从理论到代码

简介: 深度学习:ResNet从理论到代码

面临的问题

模型退化问题

在这里插入图片描述
随着网络层数加深,性能逐渐降低,但它并不是过拟合,因为在test error降低的同时,train error 也在降低。

可能的原因:网络训练过程中正反向信息流动不通畅,网络没有被完全训练。

ResNet

作者的思想是如果在一个浅层模型可以找到一个很好的结果,那么他的对应版本的深层网络也会很好,因为只需要在浅层网络后面加恒等映射就可以(就是浅层网络后面的层即使不干好事,但也不会变坏),可是优化器SGD很难做到恒等映射也就是不变的操作,于是就有了下面的ResNet。

核心思想

在这里插入图片描述
如上图所示,输入X,经过卷积层,ReLU激活得到F(X),然后计算F(x)+x得到H(x)。
$$H(x)=F(x)+x$$
x是残差块的输入,H(x)是输出,这种架构表示了即使Fx什么都不干,输出仍然会有x的信息,让网络不会变差。

句个🌰:

锐化操作实际上是一组特定的卷积核提取了图像某些特定的特征,然后与原图像合并进行视觉效果上的增强。
在这里插入图片描述
上图就可以看作原图x通过卷积层提取了相应的特征,然后把卷积层的输出与原图x在进行相加,这样就把卷积层感兴趣的特征与原图都保留了下来,就保证了图像/特征至少不会变坏。

在这里插入图片描述

其中由于ReNet可以堆叠100多层,为了让控制计算量,采用1 * 1 卷积投影降低计算量。

反向传播公式推导

请添加图片描述

残差的由来

在这里插入图片描述

听过上面的图我们发现,卷积层就是F(x),而Fx= hx-x 也就是输出-输入,所以我们把这个模块也叫做残差模块。

残差模块为什么效果好

在这里插入图片描述

我们可以把残差结构看成一个集成网络,把它展开后,可以看成多个小的网络求和的结果,那么他的健壮性就很好,即使干掉其中一个,他也可以保持很好的效果。

代码实现

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


class Residual(nn.Module):  #@save
    def __init__(self, input_channels, num_channels,
                 use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels,
                               kernel_size=3, padding=1, stride=strides)
        self.conv2 = nn.Conv2d(num_channels, num_channels,
                               kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels,
                                   kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)
目录
相关文章
|
2月前
|
机器学习/深度学习
深度学习笔记(十二):普通卷积、深度可分离卷积、空间可分离卷积代码
本文探讨了深度可分离卷积和空间可分离卷积,通过代码示例展示了它们在降低计算复杂性和提高效率方面的优势。
75 2
深度学习笔记(十二):普通卷积、深度可分离卷积、空间可分离卷积代码
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
揭秘深度学习中的微调难题:如何运用弹性权重巩固(EWC)策略巧妙应对灾难性遗忘,附带实战代码详解助你轻松掌握技巧
【10月更文挑战第1天】深度学习中,模型微调虽能提升性能,但常导致“灾难性遗忘”,即模型在新任务上训练后遗忘旧知识。本文介绍弹性权重巩固(EWC)方法,通过在损失函数中加入正则项来惩罚对重要参数的更改,从而缓解此问题。提供了一个基于PyTorch的实现示例,展示如何在训练过程中引入EWC损失,适用于终身学习和在线学习等场景。
98 4
揭秘深度学习中的微调难题:如何运用弹性权重巩固(EWC)策略巧妙应对灾难性遗忘,附带实战代码详解助你轻松掌握技巧
|
3月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
111 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
2月前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
74 2
|
2月前
|
机器学习/深度学习 算法 算法框架/工具
深度学习在图像识别中的应用及代码示例
【9月更文挑战第32天】本文将深入探讨深度学习在图像识别领域的应用,包括其原理、技术、优势以及挑战。我们将通过一个简单的代码示例,展示如何使用深度学习技术进行图像识别。无论你是初学者还是有经验的开发者,都可以从中获得启发和帮助。让我们一起探索这个充满无限可能的领域吧!
73 8
|
2月前
|
机器学习/深度学习 API 算法框架/工具
残差网络(ResNet) -深度学习(Residual Networks (ResNet) – Deep Learning)
残差网络(ResNet) -深度学习(Residual Networks (ResNet) – Deep Learning)
48 0
|
3月前
|
机器学习/深度学习 算法框架/工具 Python
深度学习在图像识别中的应用及其代码实现
【9月更文挑战第24天】本文将探讨深度学习在图像识别领域的应用,并展示如何通过代码实现这一过程。我们将介绍深度学习的基本原理,以及它在图像识别中的优势和挑战。然后,我们将通过一个简单的代码示例,展示如何使用深度学习进行图像识别。最后,我们将讨论深度学习在未来图像识别中的潜力和可能的发展方向。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】深度学习的概述及应用,附带代码示例
深度学习(Deep Learning,简称DL)是机器学习领域中的一个重要分支,其目标是通过模拟人脑神经网络的工作机制,构建多层次的抽象特征表示,使机器能够自动从原始数据中提取关键信息,从而实现高精度的任务执行。深度学习通过多层神经网络结构及其训练方式,实现了从低级像素级别到高级概念级别的递进式知识层次。 深度学习的主要组件包括输入层、隐藏层和输出层。隐藏层的数量和层数决定了模型的复杂度和表达能力。在训练过程中,权重更新和梯度下降法是关键步骤,目的是最小化损失函数,提高预测精度。深度学习主要基于反向传播算法(BP Algorithm)来优化模型参数,通过正向传播、损失计算、反向传播和梯度下降等
178 8
|
4月前
|
机器学习/深度学习 算法 算法框架/工具
深度学习在图像识别中的应用及代码实现
【8月更文挑战第3天】深度学习技术在图像识别领域取得了显著的成果,通过构建深度神经网络模型,实现了对复杂图像数据的高效处理和准确识别。本文将介绍深度学习在图像识别中的原理、关键技术及应用实例,并通过代码示例展示如何利用深度学习框架进行图像识别任务的实现。
|
6月前
|
机器学习/深度学习 人工智能 算法
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集('蜜蜂', '甲虫', '蝴蝶', '蝉', '蜻蜓', '蚱蜢', '蛾', '蝎子', '蜗牛', '蜘蛛')进行训练,得到一个识别精度较高的H5格式模型文件,然后使用Django搭建Web网页端可视化操作界面,实现用户上传一张昆虫图片识别其名称。
329 7
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50

热门文章

最新文章