Java并发编程(实战):如何解决可见性和有序性问题

简介: Java 内存模型这个概念,在职场的很多面试中都会考核到,是一个热门的考点,也是一个人并发水平的具体体现。原因是当并发程序出问题时,需要一行一行地检查代码,这个时候,只有掌握 Java 内存模型,才能慧眼如炬地发现问题。什么是 Java 内存模型?你已经知道,导致可见性的原因是缓存,导致有序性的原因是编译优化,那解决可见性、有序性最直接的办法就是禁用缓存和编译优化,但是这样问题虽然解决了,我们程序的性能可就堪忧了。

Java 内存模型这个概念,在职场的很多面试中都会考核到,是一个热门的考点,也是一个人并发水平的具体体现。原因是当并发程序出问题时,需要一行一行地检查代码,这个时候,只有掌握 Java 内存模型,才能慧眼如炬地发现问题。

什么是 Java 内存模型?

你已经知道,导致可见性的原因是缓存,导致有序性的原因是编译优化,那解决可见性、有序性最直接的办法就是禁用缓存和编译优化,但是这样问题虽然解决了,我们程序的性能可就堪忧了。

合理的方案应该是按需禁用缓存以及编译优化。 那么,如何做到“按需禁用”呢?对于并发程序,何时禁用缓存以及编译优化只有程序员知道,那所谓“按需禁用”其实就是指按照程序员的要求来禁用。所以,为了解决可见性和有序性问题,只需要提供给程序员按需禁用缓存和编译优化的方法即可。

Java 内存模型是个很复杂的规范,可以从不同的视角来解读,站在我们这些程序员的视角,本质上可以理解为,Java 内存模型规范了 JVM 如何提供按需禁用缓存和编译优化的方法。具体来说,这些方法包括 volatilesynchronizedfinal 三个关键字,以及六项 Happens-Before 规则,这也正是本期的重点内容。

使用 volatile 的困惑

volatile 关键字并不是 Java 语言的特产,古老的 C 语言里也有,它最原始的意义就是禁用 CPU 缓存。

例如,我们声明一个 volatile 变量 volatile int x = 0,它表达的是:告诉编译器,对这个变量的读写,不能使用 CPU 缓存,必须从内存中读取或者写入。这个语义看上去相当明确,但是在实际使用的时候却会带来困惑。

例如下面的示例代码,假设线程 A 执行 writer() 方法,按照 volatile 语义,会把变量 “v=true” 写入内存;假设线程 B 执行 reader() 方法,同样按照 volatile 语义,线程 B 会从内存中读取变量 v,如果线程 B 看到 “v == true” 时,那么线程 B 看到的变量 x 是多少呢?

直觉上看,应该是 42,那实际应该是多少呢?这个要看 Java 的版本,如果在低于 1.5 版本上运行,x 可能是 42,也有可能是 0;如果在 1.5 以上的版本上运行,x 就是等于 42。

class VolatileExample {
    int x = 0;
    volatile boolean v = false;
    public void writer() {
        x = 42;
        v = true;
    }
    public void reader() {
        if (v == true) {
            // 这里 x 会是多少呢?
        }
    }
}

分析一下,为什么 1.5 以前的版本会出现 x = 0 的情况呢?我相信你一定想到了,变量 x 可能被 CPU 缓存而导致可见性问题。这个问题在 1.5 版本已经被圆满解决了。Java 内存模型在 1.5 版本对 volatile 语义进行了增强。怎么增强的呢?答案是一项 Happens-Before 规则。

Happens-Before 规则

如何理解 Happens-Before 呢?如果望文生义(很多网文也都爱按字面意思翻译成“先行发生”),那就南辕北辙了,Happens-Before 并不是说前面一个操作发生在后续操作的前面,它真正要表达的是:前面一个操作的结果对后续操作是可见的。 就像有心灵感应的两个人,虽然远隔千里,一个人心之所想,另一个人都看得到。Happens-Before 规则就是要保证线程之间的这种“心灵感应”。所以比较正式的说法是:Happens-Before 约束了编译器的优化行为,虽允许编译器优化,但是要求编译器优化后一定遵守 Happens-Before 规则。

Happens-Before 规则应该是 Java 内存模型里面最晦涩的内容了,和程序员相关的规则一共有如下六项,都是关于可见性的。

恰好前面示例代码涉及到这六项规则中的前三项,为便于你理解,我也会分析上面的示例代码,来看看规则 1、2 和 3 到底该如何理解。至于其他三项,我也会结合其他例子作以说明。

①程序的顺序性规则

这条规则是指在一个线程中,按照程序顺序,前面的操作 Happens-Before 于后续的任意操作。这还是比较容易理解的,比如刚才那段示例代码,按照程序的顺序,第 6 行代码 “x = 42;” Happens-Before 于第 7 行代码 “v = true;”,这就是规则 1 的内容,也比较符合单线程里面的思维:程序前面对某个变量的修改一定是对后续操作可见的。

class VolatileExample {
    int x = 0;
    volatile boolean v = false;
    public void writer() {
        x = 42;
        v = true;
    }
    public void reader() {
        if (v == true) {
            // 这里 x 会是多少呢?
        }
    }
}

②volatile 变量规则

这条规则是指对一个 volatile 变量的写操作, Happens-Before 于后续对这个 volatile 变量的读操作。

这个就有点费解了,对一个 volatile 变量的写操作相对于后续对这个 volatile 变量的读操作可见,这怎么看都是禁用缓存的意思啊,貌似和 1.5 版本以前的语义没有变化啊?如果单看这个规则,的确是这样,但是如果我们关联一下规则 3,就有点不一样的感觉了。

③传递性

这条规则是指如果 A Happens-Before B,且 B Happens-Before C,那么 A Happens-Before C。

我们将规则 3 的传递性应用到我们的例子中,会发生什么呢?可以看下面这幅图:

网络异常,图片无法展示
|

示例代码中的传递性规则

从图中,我们可以看到:

  1. “x=42” Happens-Before 写变量 “v=true” ,这是规则 1 的内容;
  2. 写变量“v=true” Happens-Before 读变量 “v=true”,这是规则 2 的内容 。

再根据这个传递性规则,我们得到结果:“x=42” Happens-Before 读变量“v=true”。这意味着什么呢?

如果线程 B 读到了“v=true”,那么线程 A 设置的“x=42”对线程 B 是可见的。也就是说,线程 B 能看到 “x == 42” ,有没有一种恍然大悟的感觉?这就是 1.5 版本对 volatile 语义的增强,这个增强意义重大,1.5 版本的并发工具包(java.util.concurrent)就是靠 volatile 语义来搞定可见性的,这个在后面的内容中会详细介绍。

④管程中锁的规则

这条规则是指对一个锁的解锁 Happens-Before 于后续对这个锁的加锁。

要理解这个规则,就首先要了解“管程指的是什么”。管程是一种通用的同步原语,在 Java 中指的就是 synchronized,synchronized 是 Java 里对管程的实现。

管程中的锁在 Java 里是隐式实现的,例如下面的代码,在进入同步块之前,会自动加锁,而在代码块执行完会自动释放锁,加锁以及释放锁都是编译器帮我们实现的。

synchronized (this) { 
    // 此处自动加锁
    // x 是共享变量, 初始值 =10
    if (this.x < 12) {
        this.x = 12; 
    } 
 } // 此处自动解锁

所以结合规则 4——管程中锁的规则,可以这样理解:假设 x 的初始值是 10,线程 A 执行完代码块后 x 的值会变成 12(执行完自动释放锁),线程 B 进入代码块时,能够看到线程 A 对 x 的写操作,也就是线程 B 能够看到 x==12。这个也是符合我们直觉的,应该不难理解。

⑤线程 start() 规则

这条是关于线程启动的。它是指主线程 A 启动子线程 B 后,子线程 B 能够看到主线程在启动子线程 B 前的操作。

换句话说就是,如果线程 A 调用线程 B 的 start() 方法(即在线程 A 中启动线程 B),那么该 start() 操作 Happens-Before 于线程 B 中的任意操作。具体可参考下面示例代码。

Thread B = new Thread(()->{
    // 主线程调用 B.start() 之前
    // 所有对共享变量的修改,此处皆可见
    // 此例中,var==77
});
// 此处对共享变量 var 修改
var = 77;
// 主线程启动子线程
B.start();

⑥线程 join() 规则

这条是关于线程等待的。它是指主线程 A 等待子线程 B 完成(主线程 A 通过调用子线程 B的 join() 方法实现),当子线程 B 完成后(主线程 A 中 join() 方法返回),主线程能够看到子线程的操作。当然所谓的“看到”,指的是对共享变量的操作。

换句话说就是,如果在线程 A 中,调用线程 B 的 join() 并成功返回,那么线程 B 中的任意操作 Happens-Before 于该 join() 操作的返回。具体可参考下面示例代码。

Thread B = new Thread(()->{
    // 此处对共享变量 var 修改
    var = 66;
});
// 例如此处对共享变量修改,
// 则这个修改结果对线程 B 可见
// 主线程启动子线程
B.start();
B.join()
// 子线程所有对共享变量的修改
// 在主线程调用 B.join() 之后皆可见
// 此例中,var==66

被我们忽视的 final

前面我们讲 volatile 为的是禁用缓存以及编译优化,我们再从另外一个方面来看,有没有办法告诉编译器优化得更好一点呢?这个可以有,就是final 关键字

final 修饰变量时,初衷是告诉编译器:这个变量生而不变,可以可劲儿优化。 Java 编译器在 1.5 以前的版本的确优化得很努力,以至于都优化错了。

问题类似于上一期提到的利用双重检查方法创建单例,构造函数的错误重排导致线程可能看到 final 变量的值会变化。

当然了,在 1.5 以后 Java 内存模型对 final 类型变量的重排进行了约束。现在只要我们提供正确构造函数没有“逸出”,就不会出问题了。

“逸出”有点抽象,我们还是举个例子吧,在下面例子中,在构造函数里面将 this 赋值给了全局变量 global.obj,这就是“逸出”,线程通过 global.obj 读取 x 是有可能读到 0 的。因此我们一定要避免“逸出”。

final int x;
// 错误的构造函数
public FinalFieldExample() { 
    x = 3;
    y = 4;
    // 此处就是讲 this 逸出,
    global.obj = this;
}

总结

Java 的内存模型是并发编程领域的一次重要创新,之后 C++、C#、Golang 等高级语言都开始支持内存模型。Java 内存模型里面,最晦涩的部分就是 Happens-Before 规则了,Happens-Before 规则最初是在一篇叫做Time, Clocks, and the Ordering of Events in a Distributed System的论文中提出来的,在这篇论文中,Happens-Before 的语义是一种因果关系。在现实世界里,如果 A 事件是导致 B 事件的起因,那么 A 事件一定是先于(Happens-Before)B 事件发生的,这个就是 Happens-Before 语义的现实理解。

在 Java 语言里面,Happens-Before 的语义本质上是一种可见性,A Happens-Before B 意味着 A 事件对 B 事件来说是可见的,无论 A 事件和 B 事件是否发生在同一个线程里。例如 A 事件发生在线程 1 上,B 事件发生在线程 2 上,Happens-Before 规则保证线程 2 上也能看到 A 事件的发生。

Java 内存模型主要分为两部分,一部分面向你我这种编写并发程序的应用开发人员,另一部分是面向 JVM 的实现人员的,我们可以重点关注前者,也就是和编写并发程序相关的部分,这部分内容的核心就是 Happens-Before 规则。

相关文章
|
9天前
|
设计模式 安全 Java
Java编程中的单例模式:理解与实践
【10月更文挑战第31天】在Java的世界里,单例模式是一种优雅的解决方案,它确保一个类只有一个实例,并提供一个全局访问点。本文将深入探讨单例模式的实现方式、使用场景及其优缺点,同时提供代码示例以加深理解。无论你是Java新手还是有经验的开发者,掌握单例模式都将是你技能库中的宝贵财富。
14 2
|
4天前
|
JSON Java Apache
非常实用的Http应用框架,杜绝Java Http 接口对接繁琐编程
UniHttp 是一个声明式的 HTTP 接口对接框架,帮助开发者快速对接第三方 HTTP 接口。通过 @HttpApi 注解定义接口,使用 @GetHttpInterface 和 @PostHttpInterface 等注解配置请求方法和参数。支持自定义代理逻辑、全局请求参数、错误处理和连接池配置,提高代码的内聚性和可读性。
|
6天前
|
安全 Java 编译器
JDK 10中的局部变量类型推断:Java编程的简化与革新
JDK 10引入的局部变量类型推断通过`var`关键字简化了代码编写,提高了可读性。编译器根据初始化表达式自动推断变量类型,减少了冗长的类型声明。虽然带来了诸多优点,但也有一些限制,如只能用于局部变量声明,并需立即初始化。这一特性使Java更接近动态类型语言,增强了灵活性和易用性。
87 53
|
5天前
|
存储 安全 Java
Java多线程编程的艺术:从基础到实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及其实现方式,旨在帮助开发者理解并掌握多线程编程的基本技能。文章首先概述了多线程的重要性和常见挑战,随后详细介绍了Java中创建和管理线程的两种主要方式:继承Thread类与实现Runnable接口。通过实例代码,本文展示了如何正确启动、运行及同步线程,以及如何处理线程间的通信与协作问题。最后,文章总结了多线程编程的最佳实践,为读者在实际项目中应用多线程技术提供了宝贵的参考。 ####
|
2天前
|
监控 安全 Java
Java中的多线程编程:从入门到实践####
本文将深入浅出地探讨Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的摘要形式,本文将以一个简短的代码示例作为开篇,直接展示多线程的魅力,随后再详细解析其背后的原理与实现方式,旨在帮助读者快速理解并掌握Java多线程编程的基本技能。 ```java // 简单的多线程示例:创建两个线程,分别打印不同的消息 public class SimpleMultithreading { public static void main(String[] args) { Thread thread1 = new Thread(() -> System.out.prin
|
4天前
|
存储 缓存 安全
在 Java 编程中,创建临时文件用于存储临时数据或进行临时操作非常常见
在 Java 编程中,创建临时文件用于存储临时数据或进行临时操作非常常见。本文介绍了使用 `File.createTempFile` 方法和自定义创建临时文件的两种方式,详细探讨了它们的使用场景和注意事项,包括数据缓存、文件上传下载和日志记录等。强调了清理临时文件、确保文件名唯一性和合理设置文件权限的重要性。
12 2
|
5天前
|
Java UED
Java中的多线程编程基础与实践
【10月更文挑战第35天】在Java的世界中,多线程是提升应用性能和响应性的利器。本文将深入浅出地介绍如何在Java中创建和管理线程,以及如何利用同步机制确保数据一致性。我们将从简单的“Hello, World!”线程示例出发,逐步探索线程池的高效使用,并讨论常见的多线程问题。无论你是Java新手还是希望深化理解,这篇文章都将为你打开多线程的大门。
|
6天前
|
安全 Java 编译器
Java多线程编程的陷阱与最佳实践####
【10月更文挑战第29天】 本文深入探讨了Java多线程编程中的常见陷阱,如竞态条件、死锁、内存一致性错误等,并通过实例分析揭示了这些陷阱的成因。同时,文章也分享了一系列最佳实践,包括使用volatile关键字、原子类、线程安全集合以及并发框架(如java.util.concurrent包下的工具类),帮助开发者有效避免多线程编程中的问题,提升应用的稳定性和性能。 ####
27 1
|
9天前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
9天前
|
设计模式 安全 Java
Java编程中的单例模式深入解析
【10月更文挑战第31天】在编程世界中,设计模式就像是建筑中的蓝图,它们定义了解决常见问题的最佳实践。本文将通过浅显易懂的语言带你深入了解Java中广泛应用的单例模式,并展示如何实现它。