problem
L3-011 直捣黄龙 (30分)
本题是一部战争大片 —— 你需要从己方大本营出发,一路攻城略地杀到敌方大本营。首先时间就是生命,所以你必须选择合适的路径,以最快的速度占领敌方大本营。当这样的路径不唯一时,要求选择可以沿途解放最多城镇的路径。若这样的路径也不唯一,则选择可以有效杀伤最多敌军的路径。
输入格式:
输入第一行给出 2 个正整数 N(2 ≤ N ≤ 200,城镇总数)和 K(城镇间道路条数),以及己方大本营和敌方大本营的代号。随后 N-1 行,每行给出除了己方大本营外的一个城镇的代号和驻守的敌军数量,其间以空格分隔。再后面有 K 行,每行按格式城镇1 城镇2 距离给出两个城镇之间道路的长度。这里设每个城镇(包括双方大本营)的代号是由 3 个大写英文字母组成的字符串。
输出格式:
按照题目要求找到最合适的进攻路径(题目保证速度最快、解放最多、杀伤最强的路径是唯一的),并在第一行按照格式己方大本营->城镇1->...->敌方大本营输出。第二行顺序输出最快进攻路径的条数、最短进攻距离、歼敌总数,其间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
10 12 PAT DBY
DBY 100
PTA 20
PDS 90
PMS 40
TAP 50
ATP 200
LNN 80
LAO 30
LON 70
PAT PTA 10
PAT PMS 10
PAT ATP 20
PAT LNN 10
LNN LAO 10
LAO LON 10
LON DBY 10
PMS TAP 10
TAP DBY 10
DBY PDS 10
PDS PTA 10
DBY ATP 10
输出样例:
PAT->PTA->PDS->DBY
3 30 210
- 给出n个点,k条边的图,求最短路
- 满足经过节点最多,其次点权和最大
- 输出唯一路径,最短路条数,长度,以及点权和
solution
- 吐槽一下:又是最短路,又是Dijkstra,这是我在PTA打过的唯一一个算法了,好没劲啊。
Bellman-Ford不香么,队列优化的SPFA不香么,Dij连heap优化都没写过
搞得再这样我就只会dij了,,连个MST都没考过,Kruskal,Prim都是模板啊,什么鬼嘛
- 城镇代号,hash成数字把。
- 第一次WA1,2,4发现输出看错了,是最短路条数,不是经过的点数,这样例也太水了
#include<bits/stdc++.h>
using namespace std;
const int maxn = 250;
map<string,int>ma;
map<int,string>mb;
int tot = 1;
int getid(string s){
if(ma.count(s))return ma[s];
else{
mb[tot] = s;
ma[s] = tot;
tot++;
return ma[s];
}
}
int n, k, s, t;
int e[maxn][maxn], w[maxn];
int dist[maxn], vis[maxn], pre[maxn], cnt[maxn], weight[maxn], cc[maxn];
void Dijkstra(int u){
memset(dist, 0x3f,sizeof(dist));
memset(pre,-1,sizeof(pre));
dist[u] = 0; cnt[u] = 0; weight[u]=w[u]; cc[u] = 1;
for(int i = 1; i <= n; i++){
int v = -1, minn = 1e9;
for(int j = 1; j <= n; j++){
if(!vis[j] && dist[j]<minn){
minn = dist[j];
v = j;
}
}
vis[v] = 1;
for(int j = 1; j <= n; j++){
if(!vis[j] && dist[j]>dist[v]+e[v][j]){
dist[j] = dist[v]+e[v][j];
cc[j] = cc[v];
cnt[j] = cnt[v]+1;
weight[j] = weight[v]+w[j];
pre[j] = v;
}else if(!vis[j] && dist[j]==dist[v]+e[v][j]){
cc[j] += cc[v];//+=
if(cnt[j]<cnt[v]+1){
cnt[j] = cnt[v]+1;
weight[j] = weight[v]+w[j];
pre[j] = v;
}else if(cnt[j]==cnt[v]+1){
if(weight[j]<weight[v]+w[j]){
weight[j] = weight[v]+w[j];
pre[j] = v;
}
}
}
}
}
}
int main(){
cin>>n>>k;
string a,b; cin>>a>>b;
s = getid(a); t = getid(b);
memset(e,0x3f,sizeof(e));
for(int i = 1; i < n; i++){
string a; int b; cin>>a>>b;
w[getid(a)] = b;
}
for(int i = 1; i <= k; i++){
string a, b; cin>>a>>b;
int aa = getid(a), bb = getid(b);
int cc; cin>>cc;
e[aa][bb] = e[bb][aa] = cc;
}
Dijkstra(s);
vector<string>vec;
int x = t;
while(x!=-1){
vec.push_back(mb[x]);
x = pre[x];
}
reverse(vec.begin(),vec.end());
for(int i = 0; i < vec.size(); i++){
if(i==vec.size()-1)cout<<vec[i]<<endl;
else cout<<vec[i]<<"->";
}
cout<<cc[t]<<" "<<dist[t]<<" "<<weight[t]<<"\n";
return 0;
}