【LSTM时序预测】基于灰狼算法优化长短时记忆网络GWO-LSTM实现风电功率预测附Matlab代码

简介: 【LSTM时序预测】基于灰狼算法优化长短时记忆网络GWO-LSTM实现风电功率预测附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

近年来风电技术不断发展,风电在电网的渗透率不断增加,但风能本身间歇性的特点使其对电网的稳定性和安全性造成了不小的影响.为此,需要对风电的功率预测和风电场并网的稳定性展开研究.通过研究风电功率预测问题,解决风电输出功率不稳定而给电网带来的调度困难等问题,电网根据预测的功率值可以使风电更平稳的并入;通过研究风电场并网的稳定性问题,解决风电接入后风电场附近电压,功率的波动问题,从而保证大电网安全稳定地运行.论文首先介绍了课题的研究背景,意义和目前的研究现状,接着对几种在研究论文和工程实践中常出现的典型智能优化算法做了相关的介绍,分析了它们的基本原理及各自的特点与不足之处,为之后选择合适的智能优化算法用于本文的研究奠定了理论基础.其次,针对传统风电功率预测模型对未来一段时间内的风电功率预测误差较大的问题,灰狼优化的长短期记忆模型(GWO-LSTM)的预测精度整体趋势较好.

1.2 LSTM模型

⛄ 部分代码

function [BestFitness, gbest, zz] = GWO(N, maxgen, X, fitness, lb, ub, dim, fobj)


%%

[bestfitness, bestindex] = sort(fitness);

gbest = X(bestindex(1), :);      % 群体最优极值

fitnessgbest = bestfitness(1);             % 种群最优适应度值

% 初始化alpha, beta和delta_pos

Alpha_pos = gbest;

Alpha_score = fitnessgbest;

Beta_pos = X(bestindex(2), :);

Beta_score = bestfitness(2);

Delta_pos = X(bestindex(3), :);

Delta_score = bestfitness(3);


%% 初始结果显示

disp(['初始位置:', num2str(gbest)]);

disp(['初始解:', num2str(fitnessgbest)]);


%% 迭代

for gen = 1:maxgen

%     a = aini-(aini-afin)*exp(gen/maxgen-1);     % a从2线性减小到0    

%      a = ainitial/(1+exp(mu*gen/maxgen-k));

    a=2-gen*(2/maxgen);     % a从2线性减小到0    

   % 更新包括omegas在内的种群的位置

   for i = 1:N

       S = X(i, :);

       for j = 1:dim

           r1 = rand();             % r1是[0,1]中的随机数

           r2 = rand();             % r2是[0,1]中的随机数

           A1 = 2*a*r1-a;        % 公式(4)

           C1 = 2*r2;               % 公式(5)

           D_alpha = abs(C1*Alpha_pos(j)-X(i, j));  % 公式(6)-第一部分

           X1 = Alpha_pos(j)-A1*D_alpha;   % 公式 (7)-第一部分

           

           r1 = rand();

           r2 = rand();

           A2 = 2*a*r1-a;         % 公式(4)

           C2 = 2*r2;                % 公式(5)

           D_beta = abs(C2*Beta_pos(j)-X(i, j));   % 公式(6)-第二部分

           X2 = Beta_pos(j)-A2*D_beta;       % 公式 (7)-第二部分

           

           r1 = rand();

           r2 = rand();

           A3 = 2*a*r1-a;        % 公式 (4)

           C3 = 2*r2;               % 公式 (5)

           D_delta = abs(C3*Delta_pos(j)-X(i, j)); % 公式(6)-第三部分

           X3 = Delta_pos(j)-A3*D_delta;      % 公式 (7)-第三部分

           

           X(i, j)=(X1+X2+X3)/3;       % 公式 (8)

       end

       % 边界处理

       X(i, X(i, :) > ub) = ub;

       X(i, X(i, :) < lb) = lb;

       % 判断

       fit = fobj(X(i, :));

       if fit < fitness(i)

           fitness(i) = fit;

       else

           X(i, :) = S;

       end

   end

   % 更新

   [bestfitness, bestindex] = sort(fitness);

   gbest = X(bestindex(1), :);           % 群体最优极值

   fitnessgbest = bestfitness(1);      % 种群最优适应度值

   % 初始化alpha, beta和delta_pos

   Alpha_pos = gbest;

   Alpha_score = fitnessgbest;

   Beta_pos = X(bestindex(2), :);

   Beta_score = bestfitness(2);

   Delta_pos = X(bestindex(3), :);

   Delta_score = bestfitness(3);

 

   %% 每一代群体最优值存入zz数组

   zz(gen) = Alpha_score;

   gbest = Alpha_pos;

   %% 显示每代优化结果

   display(['At iteration ', num2str(gen), ' the best fitness is ', num2str(zz(gen))]);

end


BestFitness = zz(end);


%% 最终结果显示

disp(['最优位置:', num2str(gbest)]);

disp(['最优解:', num2str(zz(end))]);

% %% 绘图

⛄ 运行结果

⛄ 参考文献

[1]王立辉, 杨辉斌, 王银堂,等. 基于GWO-LSTM的丹江口水库入库径流预测[J]. 水利水运工程学报, 2021(6):9.

[2]周宇健. 基于智能优化算法的风电功率预测及并网稳定性研究.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
9天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
14天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
17天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
18天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
19天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
18天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
18天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
36 3
|
25天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
29 3
|
24天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
下一篇
无影云桌面