【MindStudio训练营第一季】基于MindX的U-Net网络的工业质检实践作业

本文涉及的产品
云服务器 ECS,每月免费额度280元 3个月
云服务器ECS,u1 2核4GB 1个月
简介: 本作业主要介绍如何使用MindSpore框架构建U-Net网络模型,使用线上昇腾算力在工业质检的模拟数据集上进行训练,并将保存的模型编译生成适配昇腾AI处理器的离线模型,部署在华为云ECS上,使用MindX SDK mxVision进行推理,从而实现图像分割的任务。

1.1 作业介绍
1.1.1 作业背景
随着新一轮科技革命和产业变革的加速演进,全球各国都在借助新技术推动制造业升级,从工业2.0自动化开始兴起,到工业3.0信息化普及,如今正迈向工业4.0智能化。借助IoT、工业大数据、人工智能等先进技术实现从低端劳动密集型产业向高端科技型产业的制造升级。

在应用人工智能技术之前,部分场景下已出现传统机器视觉进行质检的案例。但是由于产品零件复杂、光源多样等因素的限制,更多场景还是依赖于人工质检。而人工智能技术的融合可进一步提升检测精度,很多实践已证明AI算法可实现高达99%以上检测精度,可以应用在绝大多数工业质检场景中。

从AI算法到工业制造场景化应用还有很远,算法开发、应用开发、业务部署是阻碍AI应用进入工业生产的三大鸿沟。为此,华为昇腾计算秉承“硬件开放、软件开源”的理念,打造了昇腾智能制造使能平台,致力于推进制造行业转型升级。

在硬件方面,华为提供从模组/板卡到服务器/集群的Atlas系列化硬件。Atlas 200 AI加速模块具有极致性能、超低功耗的特点,可以在端侧实现物体识别、图像分类等;Atlas 300I推理卡提供超强AI推理性能,以超强算力加速应用,可广泛应用于推理场景。

在软件方面,为了帮助开发者跨越AI应用落地制造行业的三大鸿沟,华为提供了全栈软件平台与工具。特别是昇腾应用使能MindX,帮助广大应用开发者快速开发AI应用,让AI进入制造行业。据介绍,MindX中包含了“2+1+X”,其中“2”是深度学习使能MindX DL和智能边缘使能MindX Edge,帮助开发者快速搭建深度学习和边缘推理的基础平台;“1”是优选模型库ModelZoo,为开发者提供了各个场景下经过调优的模型,开发者只需根据自身场景需要,按需下载即可;最后是面向行业应用的SDK,华为已经在昇腾社区发布了面向智能制造场景的mxManufacture SDK和mxVision SDK,聚焦于工业质检场景,能够以很少的代码量、甚至于零代码完成制造行业AI应用开发。

1.1.2 作业目的
本作业使用工业质检场景中的模拟数据集,采用MindSpore深度学习框架构建U-Net网络,在华为云平台的ModelArts上创建基于昇腾910处理器的训练环境,启动训练并得到图像分割的模型;之后在华为云平台的ECS弹性云服务器上创建基于昇腾310处理器的推理环境,将该模型转换成离线模型,使用MindX SDK mxVision 执行推理任务。

本作业目的:

• 理解工业质检的背景。

• 掌握MindSpore的基础使用。

• 熟悉U-Net网络和图像分割的原理知识。

• 掌握华为云ModelArts和ECS的环境搭建。

• 熟悉昇腾910和昇腾310处理器的使用。

• 掌握离线模型的转换方法。

• 熟悉MindX SDK mxVision的使用。

考虑到本次以MindStudio为基础,注重推理,因此主要介绍在昇腾310上模型推理,训练部分省略。

1.1.3 模型介绍
U-Net介绍:
U-Net模型基于二维图像分割。在2015年ISBI细胞跟踪竞赛中,U-Net获得了许多最佳奖项。论文中提出了一种用于医学图像分割的网络模型和数据增强方法,有效利用标注数据来解决医学领域标注数据不足的问题。U型网络结构也用于提取上下文和位置信息。

image.png

UNet++是U-Net的增强版本,使用了新的跨层链接方式和深层监督,可以用于语义分割和实例分割。

image.png

运行脚本
预计模型训练所需时间约为20分钟。环境配置为华为云ModelArts上的MindSpore1.7 + Ascend 910A组合。

终端运行示例:

python train.py --data_url=./data/ --run_eval=True
• --data_url:数据集输入路径。

• --run_eval:True表示训练过程中同时进行验证。

训练日志:

============== Starting Training ==============

img shape: (1800, 1800, 3) mask shape (1800, 1800)

step: 1, loss is 2.0795505, fps is 0.01587404091683707

step: 2, loss is 2.07847, fps is 25.585164851923018

step: 3, loss is 2.0777602, fps is 34.00713498086528

step: 4, loss is 2.0772874, fps is 35.27263247302604

step: 5, loss is 2.0767062, fps is 36.21961624151569

...

step: 236, loss is 0.03733757, fps is 35.12729160908855

step: 237, loss is 0.027148828, fps is 35.399451407351144

step: 238, loss is 0.030170249, fps is 35.72904456862478

step: 239, loss is 0.049450595, fps is 36.01899576631429

step: 240, loss is 0.031540662, fps is 35.64675386485131

epoch: 5, avg loss:0.0373, total cost: 138.932 s, per step fps:1.727

epoch: 5, dice_coeff: 0.9967254781174716

End training, the best dice_coeff is: 0.9980154385637104, the best dice_coeff epoch is 1

============== End Training ==============
经过5轮的训练,图像分割模型已趋近收敛,并已找到最优Dice系数(Dice coefficient),说明模型预测值和标签的最高相似度达到0.9980。

*Dice系数是一种度量集合相似度的函数,通常用于计算两个样本的相似度(取值范围为[0,1])。

1.1.4 模型保存
如果想在昇腾AI处理器上执行推理,可以通过网络定义和CheckPoint生成AIR格式模型文件。

export.py文件内容如下,可根据实际开发情况进行修改。

import argparse

import numpy as np
from mindspore import Tensor, export, load_checkpoint, load_param_into_net, context
from src.unet_medical.unet_model import UNetMedical

from src.unet_nested import NestedUNet, UNet

from src.config import cfg_unet as cfg

from src.utils import UnetEval
parser = argparse.ArgumentParser(description='unet export')

parser.add_argument("--device_id", type=int, default=0, help="Device id")

parser.add_argument("--batch_size", type=int, default=1, help="batch size")

parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")

parser.add_argument('--width', type=int, default=572, help='input width')

parser.add_argument('--height', type=int, default=572, help='input height')

parser.add_argument("--file_name", type=str, default="unet", help="output file name.")

parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')

parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",

help="device target")

args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)

if args.device_target == "Ascend":

context.set_context(device_id=args.device_id)
if name == "__main__":

if cfg['model'] == 'unet_medical':

net = UNetMedical(n_channels=cfg['num_channels'], n_classes=cfg['num_classes'])

elif cfg['model'] == 'unet_nested':

net = NestedUNet(in_channel=cfg['num_channels'], n_class=cfg['num_classes'], use_deconv=cfg['use_deconv'],

use_bn=cfg['use_bn'], use_ds=False)

elif cfg['model'] == 'unet_simple':

net = UNet(in_channel=cfg['num_channels'], n_class=cfg['num_classes'])

else:

raise ValueError("Unsupported model: {}".format(cfg['model']))

return a parameter dict for model

param_dict = load_checkpoint(args.ckpt_file)

load the parameter into net

load_param_into_net(net, param_dict)

net = UnetEval(net)

input_data = Tensor(np.ones([args.batch_size, cfg["num_channels"], args.height, args.width]).astype(np.float32))

export(net, input_data, file_name=args.file_name, file_format=args.file_format)
终端运行示例:

python export.py --ckpt_file="./ckpt_0/best.ckpt" --width=960 --height=960 --file_name="out_model/unet_hw960_bs1" --file_format="AIR"
• ckpt_file: ckpt路径。

• width: 模型输入尺寸。

• height: 模型输入尺寸。

• file_name: 输出文件名。

• file_format: 输出格式,必须为[“ONNX”, “AIR”, “MINDIR”]。

输出结果:

out_model/unet_hw960_bs1.air
将unet_hw960_bs1.air模型下载至本地,供后续MindX SDK推理实验使用。

*提醒:本阶段结束后请及时停止Notebook训练作业,避免资源浪费。

1.2 MindX SDK推理
1.2.1 环境准备
基于训练营共享的CANN6.0.RC1_MindX_Vision3.0.RC3镜像,购买ECS,注意该镜像是针对root用户配置,我们的操作基本都在root用户下执行。

我们还要修改bash,具体命令和结果如下。

image.png

1.2.2 项目介绍
本项目支持MindStudio运行和终端运行。

下载项目代码
https://alexed.obs.cn-north-4.myhuaweicloud.com/unet_sdk.zip

将项目文件unet_sdk.zip上传至华为云ECS弹性云服务器/root/目录下,并解压;或者下载到本地电脑,用MindStudio打开。

将之前unet_hw960_bs1.air模型放到/unet_sdk/model/目录下。

项目文件结构

├── unet_sdk

├── README.md

├── data //数据集

│ ├── 1

│ │ ├──image.png //图片

│ │ ├──mask.png //标签

│ ...

├── model

│ ├──air2om.sh // air模型转om脚本

│ ├──xxx.air //air模型

│ ├──xxx.om //om模型

│ ├──aipp_unet_simple_opencv.cfg // aipp文件

├── pipeline

│ ├──unet_simple_opencv.pipeline // pipeline文件

├── main.py // 推理文件

├── run.sh // 执行文件

├── requirements.txt // 需要的三方库
1.2.3 模型转换
将unet_hw960_bs1.air模型转为昇腾AI处理器支持的.om格式离线模型,此处模型转换需要用到ATC工具。

昇腾张量编译器(Ascend Tensor Compiler,简称ATC)是昇腾CANN架构体系下的模型转换工具,它可以将开源框架的网络模型或Ascend IR定义的单算子描述文件(json格式)转换为昇腾AI处理器支持的.om格式离线模型。模型转换过程中可以实现算子调度的优化、权值数据重排、内存使用优化等,可以脱离设备完成模型的预处理。

ATC参数概览:https://support.huaweicloud.com/atctool-cann504alpha3infer/atlasatc_16_0041.html

image.png
image.png

运行脚本:
cd unet_sdk/model/ # 切换至模型存储目录

atc --framework=1 --model=unet_hw960_bs1.air --output=unet_hw960_bs1 --input_format=NCHW --soc_version=Ascend310 --log=error --insert_op_conf=aipp_unet_simple_opencv.cfg
注意air模型转om只支持静态batch,这里batchsize=1。
参数说明:

• framework:原始框架类型。

• model:原始模型文件路径与文件名。

• output:转换后的离线模型的路径以及文件名。

• input_format:输入数据格式。

• soc_version:模型转换时指定芯片版本。

• log:显示日志的级别。

• insert_op_conf:插入算子的配置文件路径与文件名,这里使用AIPP预处理配置文件,用于图像数据预处理。

输出结果:

ATC run success,表示模型转换成功,得到unet_hw960_bs1.om模型。

image.png

模型转换成功之后,可以使用MindX SDK mxVision运行脚本,在Ascend 310上进行推理。

1.2.4 MindX SDK mxVision 执行推理
MindX SDK文档请参考:

https://support.huaweicloud.com/ug-vis-mindxsdk203/atlasmx_02_0051.html

MindX SDK执行推理的业务流程:

通过stream配置文件,Stream manager可识别需要构建的element以及element之间的连接关系,并启动业务流程。Stream manager对外提供接口,用于向stream发送数据和获取结果,帮助用户实现业务对接。

plugin表示业务流程中的基础模块,通过element的串接构建成一个stream。buffer用于内部挂载解码前后的视频、图像数据,是element之间传递的数据结构,同时也允许用户挂载元数据(Metadata),用于存放结构化数据(如目标检测结果)或过程数据(如缩放后的图像)。

image.png

MindX SDK基础概念介绍:

image.png

MindX SDK 基础插件

image.png

MindX SDK业务流程编排:

Stream配置文件以json格式编写,用户必须指定业务流名称、元件名称和插件名称,并根据需要,补充元件属性和下游元件名称信息。

以下表格为本实验pipeline/unet_simple_opencv.pipeline文件及其对应的名称及描述:

image.png
image.png

pipeline/unet_simple_opencv.pipeline文件内容如下,可根据实际开发情况进行修改。

{

"unet_mindspore": {        
    "stream_config": {
        "deviceId": "0"
    },
    "appsrc0": {
        "props": {
            "blocksize": "4096000"
        },
        "factory": "appsrc",
        "next": "mxpi_imagedecoder0"
    },
    "mxpi_imagedecoder0": {
        "props": {
            "cvProcessor": "opencv",
            "outputDataFormat": "BGR"
        },
        "factory": "mxpi_imagedecoder",
        "next": "mxpi_imagecrop0"
    },
    "mxpi_imagecrop0": {
        "props": {
            "cvProcessor": "opencv",
            "dataSource": "ExternalObjects"
        },
        "factory": "mxpi_imagecrop",
        "next": "mxpi_imageresize0"
    },
    "mxpi_imageresize0": {
        "props": {
            "handleMethod": "opencv",
            "resizeType": "Resizer_Stretch",
            "resizeHeight": "960",
            "resizeWidth": "960"
        },
        "factory": "mxpi_imageresize",
        "next": "mxpi_tensorinfer0"
    },
    "mxpi_tensorinfer0": {
        "props": {
            "dataSource": "mxpi_imageresize0",
            "modelPath": "model/unet_hw960_bs1_AIPP.om"
        },
        "factory": "mxpi_tensorinfer",
        "next": "mxpi_dumpdata0"
    },
    "mxpi_dumpdata0": {
        "props": {
            "requiredMetaDataKeys": "mxpi_tensorinfer0"
        },
        "factory": "mxpi_dumpdata",
        "next": "appsink0"
    },
    "appsink0": {
        "props": {
            "blocksize": "4096000"
        },
        "factory": "appsink"
    }
}

}
修改modelPath

打开pipeline/unet_simple_opencv.pipeline文件,将"mxpi_tensorinfer0"元件的属性"modelPath"(模型导入路径)修改为模型转换后保存的om模型"model/unet_hw960_bs1.om"。

修改结果:

"modelPath": "model/unet_hw960_bs1.om"
modelPath修改完成之后,保存pipeline/unet_simple_opencv.pipeline文件。

StreamManagerApi:

StreamManagerApi文档请参考:

https://support.huaweicloud.com/ug-vis-mindxsdk203/atlasmx_02_0320.html

StreamManagerApi用于对Stream流程的基本管理:加载流程配置、创建流程、向流程发送数据、获得执行结果、销毁流程。

本实验用到的StreamManagerApi有:

• InitManager:初始化一个StreamManagerApi。

• CreateMultipleStreams:根据指定的配置创建多个Stream。

• SendData:向指定Stream上的输入元件发送数据(appsrc)。

• GetResult:获得Stream上的输出元件的结果(appsink)。

• DestroyAllStreams:销毁所有的流数据。

main.py文件内容如下,可根据实际开发情况进行修改。

import argparse
import base64
import json
import os

import cv2
import numpy as np
from StreamManagerApi import *
import MxpiDataType_pb2 as MxpiDataType

x0 = 2200 # w:2200~4000; h:1000~2800
y0 = 1000
x1 = 4000
y1 = 2800
ori_w = x1 - x0
ori_h = y1 - y0

def _parse_arg():

parser = argparse.ArgumentParser(description="SDK infer")
parser.add_argument("-d", "--dataset", type=str, default="data/",
                    help="Specify the directory of dataset")
parser.add_argument("-p", "--pipeline", type=str,
                    default="pipeline/unet_simple_opencv.pipeline",
                    help="Specify the path of pipeline file")
return parser.parse_args()

def _get_dataset(dataset_dir):

img_ids = sorted(next(os.walk(dataset_dir))[1])
for img_id in img_ids:
    img_path = os.path.join(dataset_dir, img_id)
    yield img_path

def _process_mask(mask_path):

# 手动裁剪
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)[y0:y1, x0:x1]
return mask

def _get_stream_manager(pipeline_path):

stream_mgr_api = StreamManagerApi()
ret = stream_mgr_api.InitManager()  #初始化stream
if ret != 0:
    print(f"Failed to init Stream manager, ret={ret}")
    exit(1)

with open(pipeline_path, 'rb') as f:
    pipeline_content = f.read()

ret = stream_mgr_api.CreateMultipleStreams(pipeline_content)  # 创建stream
if ret != 0:
    print(f"Failed to create stream, ret={ret}")
    exit(1)
return stream_mgr_api

def _do_infer_image(stream_mgr_api, image_path):

stream_name = b'unet_mindspore'  # 与pipeline中stream name一致
data_input = MxDataInput()
with open(image_path, 'rb') as f:
    data_input.data = f.read()

# 插入抠图的功能,扣1800*1800大小
roiVector = RoiBoxVector()
roi = RoiBox()
roi.x0 = x0
roi.y0 = y0
roi.x1 = x1
roi.y1 = y1
roiVector.push_back(roi)
data_input.roiBoxs = roiVector

unique_id = stream_mgr_api.SendData(stream_name, 0, data_input)  # 向指定Stream上的输入元件发送数据(appsrc)
if unique_id < 0:
    print("Failed to send data to stream.")
    exit(1)

infer_result = stream_mgr_api.GetResult(stream_name, unique_id)  # 获得Stream上的输出元件的结果(appsink)
if infer_result.errorCode != 0:
    print(f"GetResult error. errorCode={infer_result.errorCode},"
          f"errorMsg={infer_result.data.decode()}")
    exit(1)
# 用dumpdata获取数据
infer_result_data = json.loads(infer_result.data.decode())
content = json.loads(infer_result_data['metaData'][0]['content'])

tensor_vec = content['tensorPackageVec'][0]['tensorVec'][1]  # 1是argmax结果
data_str = tensor_vec['dataStr']
tensor_shape = tensor_vec['tensorShape']
argmax_res = np.frombuffer(base64.b64decode(data_str), dtype=np.float32).reshape(tensor_shape)
np.save("argmax_result.npy", argmax_res)

tensor_vec = content['tensorPackageVec'][0]['tensorVec'][0]  # 0是softmax结果
data_str = tensor_vec['dataStr']
tensor_shape = tensor_vec['tensorShape']
softmax_res = np.frombuffer(base64.b64decode(data_str), dtype=np.float32).reshape(tensor_shape)
np.save("softmax_result.npy", softmax_res)

return softmax_res  # ndarray

自定义dice系数和iou函数

def _calculate_accuracy(infer_image, mask_image):

mask_image = cv2.resize(mask_image, infer_image.shape[1:3])
mask_image = mask_image / 255.0
mask_image = (mask_image > 0.5).astype(np.int)
mask_image = (np.arange(2) == mask_image[..., None]).astype(np.int)

infer_image = np.squeeze(infer_image, axis=0)
inter = np.dot(infer_image.flatten(), mask_image.flatten())
union = np.dot(infer_image.flatten(), infer_image.flatten()) + \
    np.dot(mask_image.flatten(), mask_image.flatten())

single_dice = 2 * float(inter) / float(union + 1e-6)
single_iou = single_dice / (2 - single_dice)
return single_dice, single_iou

def main(_args):

dice_sum = 0.0
iou_sum = 0.0
cnt = 0
stream_mgr_api = _get_stream_manager(_args.pipeline)
for image_path in _get_dataset(_args.dataset):
    infer_image = _do_infer_image(stream_mgr_api, os.path.join(image_path, 'image.png'))  # 抠图并且reshape后的shape,1hw
    mask_image = _process_mask(os.path.join(image_path, 'mask.png'))  # 抠图后的shape, hw
    dice, iou = _calculate_accuracy(infer_image, mask_image)
    dice_sum += dice
    iou_sum += iou
    cnt += 1
    print(f"image: {image_path}, dice: {dice}, iou: {iou}")
print(f"========== Cross Valid dice coeff is: {dice_sum / cnt}")
print(f"========== Cross Valid IOU is: {iou_sum / cnt}")
stream_mgr_api.DestroyAllStreams()  # 销毁stream

if name == "__main__":

args = _parse_arg()
main(args)

run.sh文件内容如下,可根据实际开发情况进行修改。

参考SDK软件包sample脚本,需要按照实际路径修改各个环境变量路径。

set -e

CUR_PATH=$(cd "$(dirname "$0")" || { warn "Failed to check path/to/run.sh" ; exit ; } ; pwd)

Simple log helper functions

info() { echo -e "\0331;34m[INFO $1\033[1;37m" ; }
warn() { echo >&2 -e "\0331;31m[WARN $1\033[1;37m" ; }

export MX_SDK_HOME=${CUR_PATH}/../../..

export LD_LIBRARY_PATH=${MX_SDK_HOME}/lib:${MX_SDK_HOME}/opensource/lib:${MX_SDK_HOME}/opensource/lib64:/usr/local/Ascend/ascend-toolkit/latest/acllib/lib64:${LD_LIBRARY_PATH}
export GST_PLUGIN_SCANNER=${MX_SDK_HOME}/opensource/libexec/gstreamer-1.0/gst-plugin-scanner
export GST_PLUGIN_PATH=${MX_SDK_HOME}/opensource/lib/gstreamer-1.0:${MX_SDK_HOME}/lib/plugins

to set PYTHONPATH, import the StreamManagerApi.py

export PYTHONPATH=$PYTHONPATH:${MX_SDK_HOME}/python

python3 main.py
exit 0
运行脚本
激活mxVision环境变量(本作业无需此步骤):

. /root/mxVision/set_env.sh
运行脚本:

cd /root/unet_sdk/ # 切换至推理脚本目录
bash run.sh
运行截图如下:

image.png

通过MindStudio运行,会自动上传代码到预设路径,并执行,运行结果如下:

image.png

注意事项:
由于MindX SDK默认日志级别为debug,此日志级别下,dump_data插件会将所有内容打印至终端,影响日志查看。因此可以通过修改日志级别的方式,避免打印不必要的信息。

修改日志:

vi $MX_SDK_HOME/config/logging.conf
按“i”键修改 Line23行,日志级别可改为0或1或2。

Log level: -1-debug, 0-info, 1-warn, 2-error, 3-fatal

global_level=0
输入“:wq”,保存并退出。

*提醒:实验结束后请及时关闭/删除ECS弹性云服务器,避免资源浪费。

1.3 作业总结
本作业主要介绍如何使用MindSpore框架构建U-Net网络模型,使用线上昇腾算力在工业质检的模拟数据集上进行训练,并将保存的模型编译生成适配昇腾AI处理器的离线模型,部署在华为云ECS上,使用MindX SDK mxVision进行推理,从而实现图像分割的任务。我们希望掌握MindSpore的基础使用,熟悉U-Net网络和图像分割的原理知识,掌握华为云ModelArts和ECS的环境搭建,熟悉昇腾910和昇腾310处理器的使用,掌握离线模型的转换方法,以及熟悉MindX SDK mxVision的使用。

此外,在使用中发现即使使用Windows版本的MindStudio远程连接服务器,仍然有卡顿,通过查看任务管理器,发现其占用的CPU、内存、硬盘和网络资源远超其他应用,考虑到我的电脑可以流畅运行PyCharm、Intellij IDEA、Clion等类似软件,且为本地运行,相比之下,远程连接的MindStudio反而卡顿,个人认为应该还是MindStudio自身资源占用大,优化不足而导致的安顿,这一点,从庞大的安装包也能窥探一二。期待MindStudio未来能有更好的优化。

此外,建议MindStudio能将ssh远程连接服务器放在菜单栏醒目位置,方便查找。

相关实践学习
一小时快速掌握 SQL 语法
本实验带您学习SQL的基础语法,快速入门SQL。
7天玩转云服务器
云服务器ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,可降低 IT 成本,提升运维效率。本课程手把手带你了解ECS、掌握基本操作、动手实操快照管理、镜像管理等。了解产品详情:&nbsp;https://www.aliyun.com/product/ecs
目录
相关文章
|
1月前
|
缓存 算法 网络协议
计算机网络——作业3.3
计算机网络——作业3.3
48 0
|
2月前
|
机器学习/深度学习 存储 计算机视觉
【CVPR2020】ECA-Net:深度卷积神经网络的有效通道注意力
【CVPR2020】ECA-Net:深度卷积神经网络的有效通道注意力
173 1
【CVPR2020】ECA-Net:深度卷积神经网络的有效通道注意力
|
2月前
|
机器学习/深度学习 算法 网络架构
【CVPR2017】AOD-Net:端到端的除雾网络(原理&实操)
【CVPR2017】AOD-Net:端到端的除雾网络(原理&实操)
372 0
【CVPR2017】AOD-Net:端到端的除雾网络(原理&实操)
|
3月前
|
缓存 负载均衡 应用服务中间件
高性能网络编程技术 Nginx 的概念与实践
Nginx 是一款高性能、轻量级的Web服务器和反向代理服务器,它在网络编程技术领域中被广泛应用。本文将详细介绍Nginx的概念和实践,包括其核心原理、功能特点、优势和应用场景等方面。同时,还将深入探讨如何使用Nginx进行高性能网络编程,结合实际案例进行分析。
|
3月前
|
开发框架 前端开发 .NET
ASP.NET CORE 3.1 MVC“指定的网络名不再可用\企图在不存在的网络连接上进行操作”的问题解决过程
ASP.NET CORE 3.1 MVC“指定的网络名不再可用\企图在不存在的网络连接上进行操作”的问题解决过程
38 0
|
3天前
|
网络协议 Java API
深度剖析:Java网络编程中的TCP/IP与HTTP协议实践
【4月更文挑战第17天】Java网络编程重在TCP/IP和HTTP协议的应用。TCP提供可靠数据传输,通过Socket和ServerSocket实现;HTTP用于Web服务,常借助HttpURLConnection或Apache HttpClient。两者结合,构成网络服务基础。Java有多种高级API和框架(如Netty、Spring Boot)简化开发,助力高效、高并发的网络通信。
|
4天前
|
监控 安全 网络安全
云端防御:云计算环境中的网络安全策略与实践
【4月更文挑战第15天】 在数字化转型的时代,云计算已成为企业运营不可或缺的技术支撑。然而,随着云服务模式的广泛采纳,网络安全挑战亦随之而来。本文深入探讨了云计算环境下的安全威胁,分析了云服务模型对安全策略的影响,并提出了一系列创新的网络安全防护措施。通过研究最新的加密技术、访问控制机制和持续监控方法,文章旨在为企业提供一个综合性的网络安全框架,以确保其云基础设施和数据的安全性和完整性。
21 8
|
11天前
|
安全 网络安全 网络虚拟化
虚拟网络设备与网络安全:深入分析与实践应用
在数字化时代📲,网络安全🔒成为了企业和个人防御体系中不可或缺的一部分。随着网络攻击的日益复杂和频繁🔥,传统的物理网络安全措施已经无法满足快速发展的需求。虚拟网络设备🖧,作为网络架构中的重要组成部分,通过提供灵活的配置和强大的隔离能力🛡️,为网络安全提供了新的保障。本文将从多个维度深入分析虚拟网络设备是如何保障网络安全的,以及它们的实际意义和应用场景。
|
15天前
|
人工智能 安全 网络安全
构筑云端堡垒:云计算环境下的网络安全策略与实践
【4月更文挑战第5天】随着企业数字化转型的不断加速,云计算已成为支撑现代业务运行的关键基础设施。然而,云服务的广泛采用也带来了前所未有的安全挑战。本文将深入探讨云计算环境中的网络安全问题,并提出一系列切实可行的策略和措施,以增强数据保密性、完整性及可用性,从而确保云服务在为企业带来便利的同时,不牺牲其安全性。
11 1
|
19天前
|
安全 算法 网络安全
网络安全与信息安全:防范之道与实践策略
在数字化时代,网络安全与信息安全已成为全球关注的焦点。本文将深入探讨网络安全漏洞的成因、加密技术的最新发展以及提升安全意识的重要性。通过对这些关键领域的分析,我们旨在为读者提供一套综合性的策略,以增强个人和组织在网络空间的防护能力。

热门文章

最新文章