深度学习模型压缩方法的特点总结和对比

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
自定义KV模板,自定义KV模板 500次/账号
简介: 深度学习模型压缩方法的特点总结和对比

了解用于深入学习的不同模型压缩技术的需求和特点

640.png

不管你是计算机视觉新手还是专家,你可能听说过 AlexNet 于2012年赢得了ImageNet挑战赛。这是计算机视觉发展史上的转折点,因为它表明,深度学习模型能够以前所未有的精度完成非常困难的任务。

但是你是否知道 AlexNet有6.2千万训练参数?

另一个广为人知的模型 VGGNet 则有1.38亿训练参数,是AlexNet 的两倍之多。

我们知道,模型层数越多,那么表现的性能越好,那么是否需要关注和强调参数的数量呢?

640.png

知名CNN模型的复杂度和准确度

上述模型在机器视觉领域已经是基准了。但是在现实生产场景中,是否会被人们选择部署呢?你是否在实际应用中使用这些模型?

在回答上述问题之前,我们先了解如下背景知识。物联网装备预测在2030年将达到1.25-5千亿台套的规模,并且其中20%都带有摄像头,这是一个130亿的市场。

物联网摄像头设备包括家庭安全摄像头(如Amazon Ring和Google Nest),当您到家时会打开门或在看到未知的人时通知您,智能车辆上的摄像头可帮助您驾驶,停车场的摄像头在您进出时打开大门,物联网摄像头设备的应用场景十分广泛!其中一些物联网设备已经在某种程度上使用人工智能,而其他设备正在慢慢赶上。


640.jpg

许多现实场景的应用程序需要实时的设备处理能力。自动驾驶汽车就是一个很好的例子。为了使汽车在任何道路上安全行驶,它们必须实时观察道路,如果有人走在汽车前面,必须停车。在这种情况下,需要在设备上实时地处理视觉信息和做出决策。

那么,现在回到之前的问题:我们能否使用前述模型部署到生活场景中?

如果你从事的是计算机视觉领域应用和研究,你的应用程序很可能需要物联网设备。主要的挑战是物联网设备资源受限;它们的内存有限,计算能力低。而模型中可训练的参数越多,其规模就越大。深度学习模型的计算时间随着可训练参数个数的增加而增加。此外,与较少参数的模型相比,所消耗的能量和占用的空间也越大。最终的结果是,当模型很大时,深度学习模型很难在资源受限的设备上部署。虽然这些模型已经成功地在实验室中取得了巨大的成果,但它们在许多实际应用中并不可用。

在实验室,通过昂贵的GPU可以实现模型的高效计算,但是在生产场景中,资金、能源、温度等问题使得GPU的计算方式行不通。尽管将这些模型部署在云端能够提供高计算性能和存储使用性,但是却存在高时延的问题,因此不能满足现实应用的需求。

简而言之,人工智能需要在靠近数据源的地方进行处理,最好是在物联网设备本身进行处理!因此,我们可供选择之一就是:减少模型的规模。

在不影响准确性的前提下,制作一个能在边缘设备约束下运行的更小的模型是一个关键的挑战。因为仅仅拥有一个可以在资源受限的设备上运行的小模型是不够的,它应该无论是在准确性和计算速度方面都具有很好的性能。

接下来将介绍几种降低模型规模的方法。

剪枝(Pruning)

修剪通过删除对性能不敏感的冗余、不重要的连接来减少参数的数量。这不仅有助于减小整个模型的大小,而且节省了计算时间和能耗。

640.png

剪枝

好处

  • 可以在训练时和训练后执行该操作
  • 可以改善给定模型的计算时间/模型规模
  • 既可以用于卷积网络,也可以用于全连接层

不足

  • 相较于直接修改模型结构,剪枝的效果稍逊一筹
  • 对于 TensorFlow模型,往往只能减小模型规模,但是不能降低计算时间


640.png

原始模型和修剪模型的计算速度、规模差异

量化权值(Quantization)

在DNN中,权重存储为32位浮点数字。量化是通过减少比特数来表示这些权重的思想。权重可以量化为16位、8位、4位甚至1位。通过减少使用的比特数,深度神经网络的规模可以显著减小。

640.png

二进制量化

好处

  • 可以在训练时和训练后执行该操作
  • 既可以用于卷积网络,也可以用于全连接层

不足

  • 量化权值使得神经网络更难收敛。为了保证网络具有良好的性能,需要较小的学习速率
  • 量化权重使得反向传播不可行,因为梯度不能通过离散神经元反向传播。需要使用近似方法来估计损失函数相对于离散神经元输入的梯度
  • TensorFlow的量化感知训练在训练过程中不做任何量化。训练期间只收集统计数据,用于量化训练后的数据。

知识蒸馏(Knowledge distillation)

在知识蒸馏中,一个大型的、复杂的模型是在一个大型数据集上训练的。当这个大的模型能够对看不见的数据进行泛化并表现良好时,它就被传输到一个较小的网络中。较大的网络模型也称为教师模型,较小的网络也称为学生网络。

640.png

知识蒸馏

好处

  • 如果你有一个预先训练好的教师网络,训练较小的(学生)网络所需的训练数据较少。
  • 如果你有一个预先训练好的教师网络,训练较小的(学生)网络所需的时间很短。
  • 可以缩小一个网络而不管教师和学生网络之间的结构差异。

不足

  • 如果没有预先选练好的教师模型,那么训练学生模型将需要大规模的数据集和较长时间。

选择性注意(Selective Attention)

选择性注意是指把注意力集中在感兴趣的对象或元素上,而抛弃其他对象(通常是背景或其他与任务无关的对象)。它的灵感来自人眼生物学机制。当我们看东西的时候,我们一次只关注一个或几个物体,其他的区域就会模糊。

640.png

选择性注意

这就需要在你现有的人工智能系统上添加一个选择性的注意力网络。

好处

  • 更短的计算时间
  • 规模更小的模型(通过这一方法生成的人脸识别器只有44KB大小)
  • 精度保障

不足

  • 只支持从头开始的训练

低秩分解

利用矩阵/张量分解来估计信息参数。一个(m,n)维且秩为r的权矩阵A被更小维的矩阵代替。这种技术有助于将大矩阵分解成更小的矩阵。

640.png

低秩分解

好处

  • 可被用于训练阶段和训练后
  • 可被用于卷积网络,也可用于全连接层
  • 用于训练阶段时,可以降低训练时间

最棒的是,所有这些技术是相辅相成的。它们可以按原样应用,也可以与一种或多种技术相结合。通过使用剪枝、量化和Huffman编码三级流水线来减小预训练模型的大小,在ImageNet数据集上训练的VGG16模型从550MB降到了11.3MB。

上面讨论的大多数技术都可以应用于预先训练的模型,作为后处理步骤,可以减小模型大小并提高计算速度。但它们也可以在训练期间使用。量化越来越受欢迎,现在已经被引入机器学习框架。我们可以预期修剪很快也会被引入流行的框架中。

在本文中,我们研究了将基于深度学习的模型部署到资源受限设备(如物联网设备)的动机,以及减小模型大小以使其适应物联网设备而不影响准确性的需求。我们还讨论了一些现代技术压缩深度学习模型的利弊。最后,我们谈到了每一种技术可以单独应用,也可以组合使用。

引用

  1. https://towardsdatascience.com/machine-learning-models-compression-and-quantization-simplified-a302ddf326f2
  2. Buciluǎ, C., Caruana, R., & Niculescu-Mizil, A. (2006, August). Model compression. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 535–541).
  3. Cheng, Y., Wang, D., Zhou, P., & Zhang, T. (2017). A survey of model compression and acceleration for deep neural networks. arXiv preprint arXiv:1710.09282.
  4. http://mitchgordon.me/machine/learning/2020/01/13/do-we-really-need-model-compression.html
  5. https://software.intel.com/content/www/us/en/develop/articles/compression-and-acceleration-of-high-dimensional-neural-networks.html
  6. https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96
  7. https://www.learnopencv.com/number-of-parameters-and-tensor-sizes-in-convolutional-neural-network/
  8. Véstias, M. P. (2019). A survey of convolutional neural networks on edge with reconfigurable computing. Algorithms, 12(8), 154.
  9. https://technology.informa.com/596542/number-of-connected-iot-devices-will-surge-to-125-billion-by-2030-ihs-markit-says
  10. https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
  11. Mohan, A., Gauen, K., Lu, Y. H., Li, W. W., & Chen, X. (2017, May).  Internet of video things in 2030: A world with many cameras. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1–4). IEEE.
  12. Blalock, D., Ortiz, J. J. G., Frankle, J., & Guttag, J. (2020). What is the state of neural network pruning?. arXiv preprint arXiv:2003.03033.
  13. Guo, Y. (2018). A survey on methods and theories of quantized neural networks. arXiv preprint arXiv:1808.04752.
相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
目录
相关文章
|
3天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品加工优化的深度学习模型
使用Python实现智能食品加工优化的深度学习模型
94 59
|
5天前
|
机器学习/深度学习 数据采集 数据库
使用Python实现智能食品营养分析的深度学习模型
使用Python实现智能食品营养分析的深度学习模型
25 6
|
2天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品储存管理的深度学习模型
使用Python实现智能食品储存管理的深度学习模型
11 2
|
3天前
|
机器学习/深度学习 算法
深度学习中的模型优化策略
【10月更文挑战第35天】在深度学习的海洋中,模型优化是那把能够引领我们抵达知识彼岸的桨。本文将从梯度下降法出发,逐步深入到动量、自适应学习率等高级技巧,最后通过一个实际代码案例,展示如何应用这些策略以提升模型性能。
|
7天前
|
机器学习/深度学习 供应链 安全
使用Python实现智能食品供应链管理的深度学习模型
使用Python实现智能食品供应链管理的深度学习模型
27 3
|
6天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品安全监测的深度学习模型
使用Python实现智能食品安全监测的深度学习模型
19 0
|
6天前
|
机器学习/深度学习 存储 自然语言处理
使用深度学习模型进行情感分析!!!
本文介绍了如何使用深度学习模型进行中文情感分析。首先导入了必要的库,包括`transformers`、`pandas`、`jieba`和`re`。然后定义了一个`SentimentAnalysis`类,用于处理数据、加载真实标签和评估模型准确性。在主函数中,使用预训练的情感分析模型对处理后的数据进行预测,并计算模型的准确性。
14 0
|
2天前
|
机器学习/深度学习 人工智能 测试技术
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术,尤其是卷积神经网络(CNN)在图像识别任务中的最新进展和面临的主要挑战。通过分析不同的网络架构、训练技巧以及优化策略,文章旨在提供一个全面的概览,帮助研究人员和实践者更好地理解和应用这些技术。
23 9
|
9天前
|
机器学习/深度学习 人工智能 监控
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。随着卷积神经网络(CNN)的发展,图像识别的准确性和效率得到了显著提升。然而,数据不平衡、模型泛化能力、计算资源消耗等问题仍然是制约深度学习在图像识别领域进一步发展的关键因素。本文将详细介绍深度学习在图像识别中的应用案例,并讨论解决现有挑战的可能策略。
|
1天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。