深度学习与机器学习有何不同?

简介: 深度学习与机器学习有何不同?

深度学习与机器学习有何不同?



深度学习只是机器学习的一个子集


它们的主要区别在于每种算法的学习方式以及每种算法使用的数据量。


深度学习使过程中的大部分特征提取是自动化的,消除了一些所需的人工干预


它还支持使用大型数据集,当我们开始更多地探索非结构化数据的使用时,这种功能将特别有趣,特别是因为估计一个组织 80-90% 的数据是非结构化的。


机器学习:人工干预来学习,多结构化数据来学习


经典的或“非深度”的机器学习更依赖于人工干预来学习。专家确定特征层次以了解数据输入之间的差异,通常需要更多结构化数据来学习。例如,假设我要向你展示一系列不同类型快餐的图片,“手抓饼”、“汉堡”或“烧烤”。这些图像的人类专家将确定将每张图片区分为特定快餐类型的特征。例如,每种食物类型的面包可能是每张图片中的一个显着特征。或者,你可以只使用标签,例如“抓饼”、“汉堡”或“烧烤”,通过监督学习来简化学习过程。


“深度”机器学习可以利用标记数据集(也称为监督学习) 来通知其算法,但它不一定需要标记数据集。它可以以原始形式(例如文本、图像)摄取非结构化数据,并且可以自动确定将“手抓饼”、“汉堡”和“烧烤”彼此区分开来的一组特征。


通过观察数据中的模式,深度学习模型可以适当地对输入进行聚类。以之前的相同示例为例,我们可以根据图像中识别出的相似性或差异将手抓饼、汉堡和烧烤的图片分组到各自的类别中。话虽如此,深度学习模型需要更多的数据点来提高其准确性,而机器学习模型在给定基础数据结构的情况下依赖较少的数据。 深度学习主要用于更复杂的用例,例如虚拟助手或诈骗检测。


image.png


目录
相关文章
|
19天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
55 3
|
8天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
29 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
64 2
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
56 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 自然语言处理 算法
机器学习和深度学习之间的区别
机器学习和深度学习在实际应用中各有优势和局限性。机器学习适用于一些数据量较小、问题相对简单、对模型解释性要求较高的场景;而深度学习则在处理大规模、复杂的数据和任务时表现出色,但需要更多的计算资源和数据,并且模型的解释性较差。在实际应用中,需要根据具体的问题和需求,结合两者的优势,选择合适的方法来解决问题。
63 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
浅谈机器学习与深度学习的区别
浅谈机器学习与深度学习的区别
51 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能的未来:从机器学习到深度学习的演进
【10月更文挑战第8天】人工智能的未来:从机器学习到深度学习的演进
61 0
|
6月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
239 14
|
6月前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
118 1
|
6月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)

热门文章

最新文章

下一篇
无影云桌面