模仿学习对比强化学习

简介: 模仿学习对比强化学习

模仿学习介绍


模仿学习是将专家经验作为样本进行强监督学习的一种方法。

模仿学习对比强化学系


模仿学习

优点:

1.简单、稳定的监督学习过程

缺点:

1.需要提供榜样行为数据

2.需要处理多解型行为(例如 绕过障碍物,可以从左边或者右边,但是专家数据不一定覆盖所有行为,可以用多元高斯分布去等方法去处理)

3.不能超越人类水平

强化学习

优点:

1.可以超越人类水平

缺点:

1.需要设置奖励函数

2.必须解决策略探索性问题

3.训练可能不收敛、不稳定

结合模仿学习和强化学习:Pretrain&Finetune


1.使用模仿学习训练出模型,作为预训练。

2.使用强化学习对模型进行改进。

相关文章
|
6月前
|
机器学习/深度学习 自然语言处理 算法
深度学习算法:从模仿到创造
深度学习是一种受到生物学启发的机器学习方法,其目标是通过构建多层神经网络来模拟人脑的工作原理。它在过去几十年来取得了巨大的进展,并在图像识别、语音识别、自然语言处理等领域取得了突破性的成果。 深度学习的核心思想是模仿人脑的神经网络。人脑中的神经元通过连接起来形成庞大的神经网络,用来处理感知、思维和决策等任务。深度学习的神经网络也是由许多层次的神经元组成,每一层都能够从上一层中学习到更加抽象的特征表示。通过训练数据,深度学习模型能够自动学习到最优的特征表示,并用于解决各种复杂的任务。
|
3月前
|
机器学习/深度学习 自动驾驶 机器人
深度学习之人类行为模仿
基于深度学习的人类行为模仿是指利用深度学习技术构建模型,使计算机系统能够学习、理解、并模仿人类的行为。通过模拟人类的动作、决策过程、情感反应等行为,相关技术在机器人、虚拟助手、人机交互等领域具有广泛的应用前景。
68 5
|
3月前
|
机器学习/深度学习
深度学习的奥秘:如何通过神经网络模拟人类大脑
【8月更文挑战第23天】在这篇文章中,我们将探索深度学习的奥秘,特别是神经网络如何模拟人类大脑的工作方式。我们将从基础的神经网络开始,逐步深入到深度学习的核心概念,包括反向传播和卷积神经网络。我们还将讨论深度学习在现实世界中的应用,以及它如何改变了我们的生活。最后,我们将探讨深度学习的未来发展方向,以及它可能带来的影响。
|
机器学习/深度学习 人工智能 算法
手把手教你强化学习 (一) 什么是强化学习?与机器学习有什么区别?
手把手教你强化学习 (一) 什么是强化学习?与机器学习有什么区别?
395 3
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
|
机器学习/深度学习 算法
如何通俗易懂地理解基于模型的强化学习?
如何通俗易懂地理解基于模型的强化学习?
|
机器学习/深度学习 人工智能 自然语言处理
强化学习从基础到进阶–案例与实践[11]:AlphaStar论文解读、监督学习、强化学习、模仿学习、多智能体学习、消融实验
强化学习从基础到进阶–案例与实践[11]:AlphaStar论文解读、监督学习、强化学习、模仿学习、多智能体学习、消融实验
强化学习从基础到进阶–案例与实践[11]:AlphaStar论文解读、监督学习、强化学习、模仿学习、多智能体学习、消融实验
|
机器学习/深度学习 算法 自动驾驶
手把手教你强化学习 (七) 强化学习中的无模型控制
手把手教你强化学习 (七) 强化学习中的无模型控制
260 0
|
机器学习/深度学习 存储 人工智能
动手强化学习(六):DQN 算法
在车杆环境中,有一辆小车,智能体的任务是通过左右移动保持车上的杆竖直,若杆的倾斜度数过大,或者车子离初始位置左右的偏离程度过大,或者坚持时间到达 200 帧,则游戏结束。智能体的状态是一个维数为 4 的向量,每一维都是连续的,其动作是离散的,动作空间大小为 2,详情参见表 7-1 和表 7-2。在游戏中每坚持一帧,智能体能获得分数为 1 的奖励,坚持时间越长,则最后的分数越高,坚持 200 帧即可获得最高的分数。
329 0
|
机器学习/深度学习 人工智能 算法
深度强化学习中的好奇心
早期一个很难的深度强化学习任务,蒙特祖马的复仇,随着随机网络蒸馏探索取得了重大突破
597 0