模仿学习对比强化学习

简介: 模仿学习对比强化学习

模仿学习介绍


模仿学习是将专家经验作为样本进行强监督学习的一种方法。

模仿学习对比强化学系


模仿学习

优点:

1.简单、稳定的监督学习过程

缺点:

1.需要提供榜样行为数据

2.需要处理多解型行为(例如 绕过障碍物,可以从左边或者右边,但是专家数据不一定覆盖所有行为,可以用多元高斯分布去等方法去处理)

3.不能超越人类水平

强化学习

优点:

1.可以超越人类水平

缺点:

1.需要设置奖励函数

2.必须解决策略探索性问题

3.训练可能不收敛、不稳定

结合模仿学习和强化学习:Pretrain&Finetune


1.使用模仿学习训练出模型,作为预训练。

2.使用强化学习对模型进行改进。

相关文章
|
5月前
|
机器学习/深度学习 算法 安全
大模型进阶微调篇(二):基于人类反馈的强化学习RLHF原理、优点介绍,但需要警惕LLMs的拍马屁行为
本文探讨了基于人类反馈的强化学习(RLHF)方法的优缺点。作者指出,虽然RLHF能够使模型更好地满足用户需求,但也存在缺乏多样性、创新不足、偏好固化和难以适应动态变化等问题。文章通过具体实验和示例代码,详细解析了RLHF的工作原理,并强调了其在实际应用中的潜在风险。
549 6
|
7月前
|
机器学习/深度学习 自动驾驶 机器人
深度学习之人类行为模仿
基于深度学习的人类行为模仿是指利用深度学习技术构建模型,使计算机系统能够学习、理解、并模仿人类的行为。通过模拟人类的动作、决策过程、情感反应等行为,相关技术在机器人、虚拟助手、人机交互等领域具有广泛的应用前景。
167 5
|
机器学习/深度学习 算法 自动驾驶
【强化学习】什么是“强化学习”
强化学习是机器学习领域的一种重要方法,主要通过使用环境的反馈信息来指导智能体的行为,并且通过智能体收集的经验数据对自身策略进行优化。在强化学习中,我们通常用“智能体”来表示学习机器或者一个决策实体。这个智能体在某个环境中采取行动,然后收到环境的反馈信号(奖励或者惩罚),从而逐渐学习到一个最优的行动策略。在强化学习中,主要涉及到一些概念,如状态、行动、奖励、策略等等。状态指的是输入进入智能体算法的集合,行动指的是智能体做出的反应,奖励通常是指环境给予智能体的反馈信息,策略指的是智能体在某种状态下选择的行为。
311 0
【强化学习】什么是“强化学习”
|
机器学习/深度学习 决策智能
初探强化学习
初探强化学习
184 0
|
机器学习/深度学习 算法
如何通俗易懂地理解基于模型的强化学习?
如何通俗易懂地理解基于模型的强化学习?
154 0
|
机器学习/深度学习 人工智能 自然语言处理
强化学习从基础到进阶–案例与实践[11]:AlphaStar论文解读、监督学习、强化学习、模仿学习、多智能体学习、消融实验
强化学习从基础到进阶–案例与实践[11]:AlphaStar论文解读、监督学习、强化学习、模仿学习、多智能体学习、消融实验
强化学习从基础到进阶–案例与实践[11]:AlphaStar论文解读、监督学习、强化学习、模仿学习、多智能体学习、消融实验
|
机器学习/深度学习 算法 决策智能
【ICLR2020】通过强化学习和稀疏奖励进行模仿学习
【ICLR2020】通过强化学习和稀疏奖励进行模仿学习
235 0
|
机器学习/深度学习 人工智能 自然语言处理
「强化学习可解释性」最新2022综述
「强化学习可解释性」最新2022综述
168 0
|
机器学习/深度学习 人工智能 算法
理解强化学习
理解强化学习
161 0
理解强化学习
|
机器学习/深度学习 知识图谱
基于强化学习的可解释性推荐 文献三篇
基于强化学习的可解释性推荐 文献三篇