解释一下为何[ ] == ![ ] // ---> true
首先看一张图
![ ] 是 false
原式:[ ] == false
根据第八条,false通过tonumber()转换为0
原式:[ ] == 0
根据第十条,[ ]通过ToPrimitive()转换为' '
原式:' ' == 0
根据第六条
原式:0 == 0
尝试实现new
function ObjectClass() {//对象 console.log(arguments[0]) } ObjectClass.prototype.constructor = ObjectClass function create() { // 创建一个空的对象 var obj = {} // 获得构造函数 var _constructor = this // 链接到原型 obj.__proto__ = _constructor.prototype // 绑定 this,执行构造函数 var result = _constructor.apply(obj, arguments) // 确保 new 出来的是个对象 return typeof result === 'object' ? result : obj } create.call(ObjectClass, 'hello world')//实例化
拓展typeof功能使其支持更多类型(array,object,null区分),并解释一下typeof null为何是object
function myTypeOf(target) { var _type = typeof (target) var temp = { "[object Object]": 'object', "[object Array]": 'array', "[object Number]": 'number', "[object String]": 'string', "[object Boolean]": 'boolean' } if (target === null) { return 'null' } else if (_type == 'object') { var str = Object.prototype.toString.call(target)//根据toString区分 return temp[str] } else { return _type } } console.log(myTypeOf('hello')) //string console.log(myTypeOf(111)) // number console.log(myTypeOf(true)) // boolean console.log(myTypeOf({})) // object console.log(myTypeOf([])) // array console.log(myTypeOf(null)) // null console.log(myTypeOf(undefined)) // undefined console.log(myTypeOf(Symbol())) // symbol
typeof null为何是object
因为在早期js初版本中,操作系统使用的是32位,出于性能考虑,使用低位存储变量类型,object的类型前三位是000,而null是全0,从而系统将null误判为object
instanceof是什么?尝试实现一下
用官话来讲:instanceof用于检测构造函数的prototype属性是否出现在某个实例对象的原型链上
通俗来讲,a instanceof b也就是判断a是否是由b实例化得来的
实现:
function ObjectClass() {} ObjectClass.prototype.constructor = ObjectClass var _objectClass = new ObjectClass() function myInstanceof(orgProto, tag) { //org前者,实例化对象, tag后者,类 var tagProto = tag.prototype orgProto = orgProto.__proto__ for (;;) { //死循环查询原型链上是否有类的原型 if (orgProto === null) { return false } if (orgProto === tagProto) { return true } orgProto = orgProto.__proto__ } } console.log(myInstanceof(Object, Function)) // true console.log(myInstanceof(Object, Object)) // true console.log(myInstanceof(String, Object)) // true console.log(myInstanceof(_objectClass, Object)) // true console.log(myInstanceof(String, String)) // false console.log(myInstanceof(Boolean, Boolean)) // false
解释以下代码分别在控制台显示什么,并简单说明
有一个对象Car,分别对以下四种情况进行作答
Car.prototype.name = 'BMW' function Car() {}
1.实例化对象时打印BMW,因为Car.prototype.name = 'BMW',实例化的car本身没有name属性,于是会在Car的原型上找。此时将Car.prototype.name = 'Benz',实例化后的car.name也会等于Benz,因为name是基本数据类型(原始值),当值发送变化,实例化后的对象也会改变
var car = new Car() console.log(car.name) //BMW Car.prototype.name = 'Benz' console.log(car.name) //Benz
2.实例化对象时打印Benz,因为在实例化之前就已经改变构造函数原型上的name值
Car.prototype.name = 'Benz' var car = new Car() console.log(car.name) //Benz
3.第一个log的BMW与上述一样,第二个log依然打印BMW的原因是,这里将Car.prototype直接改变成另一个对象,由于对象是引用数据类型(引用值),指向的是内存地址而不是值,new之前和new之后的实例对象引用的name地址不同
var car = new Car() console.log(car.name) //BMW Car.prototype = { name: 'Benz' } console.log(car.name) //BMW
4.和上述相同,原因是修改了prototype,改变的是引用地址,new之前和new之后的实例对象引用的name地址不同
Car.prototype = { name: 'Benz' } var car = new Car() console.log(car.name) //Benz
写一个函数,计算字符串Unicode总长度(例如:abcd,打印4,qwerdf,打印6)
需要注意的是,英文字符占1个字节,中文字符占两个字节
function unicodeLength(str) { for (var i = 0, count = 0; i < str.length; i++) { console.log(str.charCodeAt(i)) if (str.charCodeAt(i) > 255) { //中文字符 count += 2 } else { //英文字符 count++ } } return count } console.log(unicodeLength('hello,1024,你好')) //17
实现一下js中window自带的isNaN()函数
注意点:如果直接使用NaN==NaN来判断,会返回false,需要将NaN转换成字符串,再来判断
isNaN('asda') //window下的原函数 console.log(isNaN(13)) //false console.log(isNaN('aaa')) //true function myIsNaN(number) { return "" + Number(number) == "NaN" ? true : false } console.log(myIsNaN(32323)) //false console.log(myIsNaN('aaa')) //true
实现数组push()方法
function myPush() { for (var i = 0; i < arguments.length; i++) { this[this.length] = arguments[i] } return this.length } Array.prototype.myPush = myPush var list = [1, 2, 3, 4, 5] var item = 6 console.log(list.myPush(item)) //6 console.log(list) //[1, 2, 3, 4, 5, 6]
实现数组乱序(提示:使用Array.sort)
Array.sort((a,b)=>{})中a-b升序,b-a降序
Array.prototype.random = random function random() { this.sort(function () { return Math.random() - 0.5 }) return this } var list = [1, 2, 3, 4, 5, 6, 7, 8, 9] console.log(list.random())//[3, 2, 6, 4, 9, 8, 1, 5, 7] 结果每次都不同
以下代码在控制台显示什么?说明原因
var obj = { "0": 'a', "1": 'b', "2": 'c', "length": 3, "push": Array.prototype.push } obj.push(1, 2, 3) console.log(obj)
打印结果是
{ 0: "a" 1: "b" 2: "c" 3: 1 4: 2 5: 3 length: 6 }
原因:说明原因之前先看一段Array.prototype.push的源码:
function ArrayPush () { var n = TO_UNIT32(this.length); var m = %_ArgumentsLength(); for (var i = 0; i < m; i++) { this[i + n ] = %_Arguments(i); } this.length = n + m; return this.length; }
push的原理是在原对象后面将push的内容遍历进去,获取this.length并且在此基础上加上push的个数,这就不难解释为何push了三个数后length为6
解释以下代码打印为undefined的原因
var num = 123; num.item = 'abc' console.log(num.item) //undefined
第一步:var num = 123
第二步:num.item = 'abc'//隐式转换,相当于new Number(num).item = 'abc'(包装类生成引用类型数据),此时底层会判定此时的num是原始值,不存在属性值,所以执行delete(num.item)
第三步:打印undefined
使用JS原生实现function中的call,apply,bind函数
call:
Function.prototype.myCall = function () { var _this = arguments[0] || window; //第一项是需要this指向的对象 _this._function = this //this是要执行的函数,改变指向为_this var args = [] //把除this之外的所有参数放在args中 for (var i = 1; i < arguments.length; i++) { //i = 1,第二项到最后一项是参数 args[i - 1] = arguments[i] } return eval("_this._function(" + args + ")") //eval能将数组隐式拆分,效果与join相似,但二者区别很大,return将函数执行结果返回 delete _this._function //执行完成后删除当前_function,这个_function用来放this } var a = 'window' var obj1 = { a: 'obj1', fn: function () { console.log(this.a) console.log(arguments) } } var obj2 = { a: 'obj2' } obj1.fn.myCall(obj2, 1, 2, 3, 4) //obj2 arguments[1, 2, 3, 4] obj1.fn.myCall(this, 3, 2, 1) //window arguments[3, 2, 1]
apply(调用上面的myCall实现即可):
Function.prototype.myApply = function () { var _this = arguments[0] || window; //第一项是需要this指向的对象 _this._function = this //this是要执行的函数,改变指向为_this return eval("_this._function.myCall(_this, " + arguments[1] + ")") //eval能将数组隐式拆分,效果与join相似,但二者区别很大,return将函数执行结果返回 delete _this._function //执行完成后删除当前_function,这个_function用来放this } var a = 'window' var obj1 = { a: 'obj1', fn: function () { console.log(this.a) console.log(arguments) } } var obj2 = { a: 'obj2' } obj1.fn.myApply(obj2, [1, 2, 3, 4]) //obj2 arguments[1, 2, 3, 4] obj1.fn.myApply(this, [3, 2, 1]) //window arguments[3, 2, 1]
bind(继续调用上面myApply):
Function.prototype.myBind = function () { var t = this; var _this = arguments[0] || window; //第一项是需要this指向的对象 var args = Array.prototype.slice.myApply(arguments, [ 1], ) //这项的目的是为了去除第一项arguments[0],就与上面的myCall中的遍历作用相同,Array.prototype.slice传一个参数,slice(start,end)表示删除第start到end项并返回删除后的数组,这里我们只用截取,不用删除,这里是删除第一项(由于用的是myApply,第二个参数是数组所以用[1])并返回删除后的数组 return function () { return t.myApply(_this, args) } } var a = 'window' var obj1 = { a: 'obj1', fn: function () { console.log(this.a) console.log(arguments) } } var obj2 = { a: 'obj2' } obj1.fn.myBind(obj2, 1, 2, 3, 4)() //obj2 arguments[1, 2, 3, 4] obj1.fn.myBind(this, 3, 2, 1)() //window arguments[3, 2, 1]
对mvvm,mvp和mvc的理解
Model–View–ViewModel(MVVM),Model-View-Presenter(MVP)和Model–View-Controller(MVC) 都是软件架构设计模式
相同的地方
Model 是指任何一个领域模型(domain model),一般做数据处理,可以理解为数据库,用来存放应用的所有数据对象。模型不必知晓视图和控制器的细节,模型只需包含数据及直接和这些数据相关的逻辑。任何事件处理代码、视图模版,以及那些和模型无关的逻辑都应当隔离在模型之外,它代表了真实情况的内容(一个面向对象的方法),或表示内容(以数据为中心的方法)的数据访问层
View就是用户界面(UI),视图层是呈现给用户的,用户与之产生交互。在javaScript应用中,视图大都是由html、css和JavaScript模版组成的。除了模版中简单的条件语句之外,视图不应当包含任何其他逻辑。事实上和模型类似,视图也应该从应用的其他部分中解耦出来
不同的地方
MVC的Controller控制器是模型和视图的纽带。控制器从视图获得事件和输入,对它们进行处理,并相应地更新视图。当页面加载时,控制器会给视图添加事件监听,比如监听表单提交和按钮单击。然后当用户和应用产生交互时,控制器中的事件触发器就开始工作。
MVVM的ViewModel是一个公开公共属性和命令的抽象的view。取代了 MVC 模式的 controller,或 MVP 模式的任命者(presenter),MVVM 有一个驱动。 在 viewmodel 中,这种驱动传达视图和数据绑定的通信。此 viewmodel 已被描述为该 model 中的数据的状态。
MVP的Presenter负责逻辑的处理,在MVP中View并不直接使用Model,它们之间的通信是通过Presenter来进行的,所有的交互都发生在Presenter内部,而 在MVC中View会直接从Model中读取数据而不是通过Controller。
谈谈对前端页面渲染的理解(过程,原理,性能,重绘和回流)
页面渲染分为以下步骤
1. 处理HTML语句标签并构建 DOM 树
2. 处理CSS语句并构建CSSOM树
3. 将处理好的DOM与CSSOM合并成一个渲染树
4. 根据渲染树来布局,计算每个节点的位置样式等等
5. 调 GPU(显卡)绘制页面,合成图层,最后显示在浏览器
在处理CSSOM时,会暂时堵塞DOM渲染,并且扁平层级关系有利于渲染速度,越详细的样式选择器,会导致页面渲染越慢
CSS加载会影响JS文件或语句加载,JS需要等待CSS解析完毕后运行
document中的DOMContentLoaded和Load的区别:前者只需HTML加载完成后,就会触发,后者需要等HTML,CSS,JS都加载完成才会触发
图层概念:普通文档流就是一个图层,特定的属性可以生成一个新的图层。 不同的图层渲染互不影响,所以对于某些频繁需要渲染的建议单独生成一个新图层,提高性能。但也不能生成过多的图层,会引起反作用
以下CSS属性可以生成新图层:
3D 变换:translate3d、translateZ
will-change
video、iframe 标签
通过动画实现的 opacity 动画转换
position: fixed
重绘(Repaint)和回流(Reflow)
重绘是当节点需要更改外观而不会影响布局的,比如改变color就叫称为重绘回流是布局或者几何属性需要改变就称为回流。
回流必定会发生重绘,重绘不一定会引发回流。
回流所需的成本比重绘高的多,改变深层次的节点很可能导致父节点的一系列回流。
所以以下几个动作可能会导致性能问题:
改变 window 大小
改变字体
添加或删除样式
文字改变
定位或者浮动
盒模型
如何减少重绘和回流
使用 translate 替代 top
使用 visibility 替换 display: none ,因为前者只会引起重绘,后者会引发 回流(改变了布局)
把DOM离线后修改,比如:先把DOM给display:none(回流),然后你修改100次,然后再把它显示出来
不要把 DOM 结点的属性值放在一个循环里当成循环里的变量
不要使用 table 布局,可能很小的一个小改动会造成整个 table 的重新布局
动画实现的速度的选择,动画速度越快,回流次数越多,也可以选择使用requestAnimationFrame
CSS 选择符从右往左匹配查找,避免 DOM 深度过深
将频繁运行的动画变为图层,图层能够阻止该节点回流影响别的元素。比如对 于 video 标签,浏览器会自动将该节点变为图层。
谈谈对前端继承的理解
原型链继承,子类实例继承的属性有,子类构造函数的属性,父类构造函数的属性,父类原型上的属性
缺点:无法向父类传参,当父类原型上的属性改变时,所以子类实例相对应的属性都会对应改变
function Father() { this.name = "father"; this.sex = "man" } Father.prototype.hobby = 'fish' function Son() { this.name = "son"; } // 原型链继承 Son.prototype = new Father() var son1 = new Son() var son2 = new Son() Father.prototype.hobby = 'dog' //缺点,修改父类prototype上的属性时,所有子类都会随之修改 console.log(son1.hobby) // dog console.log(son2.hobby) // dog console.log(son1 instanceof Father) // true
构造函数继承(通过call,apply),子类可继承多个父类,可传参给父类
缺点:每个实例都有父类的构造函数,父类prototype上的属性无法继承
// 构造函数继承(通过call,apply) function Father() { this.name = "father"; this.sex = "man" } Father.prototype.hobby = 'fish' function Son(sex) { Father.call(this, sex) //可继承多个父类,但是每个实例都有父类的构造函数 this.name = "son"; } var son = new Son('woman') console.log(son.sex) //woman,可传参给父类 console.log(son.hobby) //undefined,缺点,父类prototype上的属性无法继承 console.log(son instanceof Father) // false
组合继承,上述两者的结合,解决了上面的缺点和问题(常用)
缺点:Father.call()和new Father()执行了两次父类构造函数,增加了性能损耗,父类的原型上的constructor指向了子类,此时需要在实例化父类(new Father)后在实例化子类(new Son)之前添加一句话:Father.prototype.constructor = Father
// 组合继承 function Father(sex) { this.name = "father"; this.sex = sex } Father.prototype.hobby = 'fish' function Son(sex) { Father.call(this, sex) //可继承多个父类 this.name = "son"; } Son.prototype = new Father() Father.prototype.constructor = Father //解决父类的原型上的constructor指向了子类 var son = new Son('woman') console.log(son.sex) //woman,可传参给父类 console.log(son.hobby) //fish console.log(son instanceof Father) // true
原型式继承,和Object.create相似,通过函数进行继承,会继承父类所有属性
缺点:父类原型上的属性发生变化时,所有子类对应属性都会改变,子类无法直接修改属性,复用性较差
// 原型式继承 function Father() { this.name = "father"; this.sex = 'man' } Father.prototype.hobby = 'fish' function Son() { this.name = "son"; } function inherit(father) { function Fn() {} Fn.prototype = father; return new Fn() //类似于复制了father这个对象 } var father = new Father() var son1 = inherit(father) Father.prototype.hobby = 'dog' //缺点,修改父类prototype上的属性时,所有子类都会随之修改 var son2 = inherit(father) console.log(son1.sex) //man console.log(son1.hobby) //dog console.log(son2.hobby) //dog console.log(son1 instanceof Father) // true
寄生式继承,继承父类所有属性,并且可以添加子类自己的属性方法
缺点:代码复用率低
function Father(sex) { this.name = "father"; this.sex = sex //实例传参 } Father.prototype.hobby = 'fish' function Son() { this.name = "son"; } Object.prototype.myCreate = function (obj) {//实现Object.create function Fn() {} Fn.prototype = obj; return new Fn() } function inherit(father) { var _father = Object.myCreate(father)//克隆对象 _father.getInfo = function () {//增强子类,修改属性,产生子类独有的方法和属性,但是耦合高,复用性差,不同子类的写法各不同 console.log(_father.name) console.log(_father.hobby) console.log(_father.sex) } return _father; } var father = new Father('woman') var son = inherit(father) son.getInfo() //father,fish,woman
寄生式组合继承,继承父类所有属性,解决调用两次父类构造函数问题:一次是在创建子类型原型,一次在子类内部(理论上是最理想的继承)
// 寄生式组合继承 function Father(sex) { this.name = "father"; this.sex = sex //实例传参 } Father.prototype.hobby = 'fish' Father.prototype.getName = function () { console.log(this.name) } function Son(sex) { console.log(this.superClass) //Father Father.call(this, sex); //构造函数继承传递参数 this.name = "son"; this.hobby = "dog"; } Son.prototype.getName = function () { console.log(this.name) } function Grandson(sex) { console.log(this.superClass) //Son Son.call(this, sex); //构造函数继承传递参数 this.name = "grandson"; this.hobby = "cat"; } var inherit = (function () { function F() {} //使用闭包产生私有函数,使每个子类继承的父类属性无引用关系 return function (father, son) { F.prototype = father.prototype; //私有函数取出父类的原型 son.prototype = new F(); son.prototype.superClass = father; //子类的超类指向父类,子类通过this.superClass调用Father son.prototype.constructor = son; } }()) inherit(Father, Son) inherit(Son, Grandson) var father = new Father('fatherMan') var son = new Son('sonMan') var grandson = new Grandson('grandsonMan') console.log(son instanceof Father) //true console.log(grandson instanceof Son) //true console.log(grandson instanceof Father) //true console.log(father.sex) //fatherMan console.log(son.sex) //sonMan console.log(grandson.sex) //grandsonMan console.log(father.hobby) //fish console.log(son.hobby) //dog console.log(grandson.hobby) //cat father.getName() //father son.getName() //son grandson.getName() //grandson