【JUC】信号量Semaphore详解

简介: 【JUC】信号量Semaphore详解

前言


大家应该都用过synchronized 关键字加锁,用来保证某个时刻只允许一个线程运行。那么如果控制某个时刻允许指定数量的线程执行,有什么好的办法呢? 答案就是JUC提供的信号量Semaphore


介绍和使用


  • Semaphore(信号量)可以用来限制能同时访问共享资源的线程上限,它内部维护了一个许可的变量,也就是线程许可的数量
  • Semaphore的许可数量如果小于0个,就会阻塞获取,直到有线程释放许可
  • Semaphore是一个非重入锁


API介绍


  1. 构造方法
  • public Semaphore(int permits)permits 表示许可线程的数量
  • public Semaphore(int permits, boolean fair)fair 表示公平性,如果设为 true,表示是公平,那么等待最久的线程先执行
  1. 常用API
  • public void acquire():表示一个线程获取1个许可,那么线程许可数量相应减少一个
  • public void release():表示释放1个许可,那么线程许可数量相应会增加
  1. 其他API
  • void acquire(int permits):表示一个线程获取n个许可,这个数量由参数permits决定
  • void release(int permits):表示一个线程释放n个许可,这个数量由参数permits决定
  • int availablePermits():返回当前信号量线程许可数量
  • int getQueueLength(): 返回等待获取许可的线程数的预估值


基本使用


public static void main(String[] args) {
        // 1. 创建 semaphore 对象
        Semaphore semaphore = new Semaphore(2);
        // 2. 10个线程同时运行
        for (int i = 0; i < 8; i++) {
            new Thread(() -> {
                // 3. 获取许可
                try {
                    semaphore.acquire();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                try {
                    log.debug("running...");
                    sleep(1);
                    log.debug("end...");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    // 4. 释放许可
                    semaphore.release();
                }
            }).start();
        }
    }

运行结果:

1671202010245.jpg


原理介绍


1671202031449.jpg


上面是Semaphore的类结构图,其中FairSyncNonfairSync是它的内部类,他们共同继承了AQS类,AQS的共享模式提供了Semaphore的加锁、解锁。

如果对AQS不了解的请移步深入浅出理解Java并发AQS的共享锁模式

为了更好的搞懂原理,我们通过一个例子来帮助我们理解。

假设Semaphorepermits为 3,这时 5 个线程来获取资源,其中Thread-1Thread-2Thread-4CAS 竞争成功,permits 变为 0,而 Thread-0 Thread-3 竞争失败。

1671202039535.jpg


获取许可acquire()


  • acquire()主方法会调用 sync.acquireSharedInterruptibly(1)方法
  • acquireSharedInterruptibly()方法会先调用tryAcquireShared()方法返回许可的数量,如果小于0个,调用doAcquireSharedInterruptibly()方法进入阻塞
// acquire() -> sync.acquireSharedInterruptibly(1),可中断
public final void acquireSharedInterruptibly(int arg) {
    if (Thread.interrupted())
        throw new InterruptedException();
    // 尝试获取通行证,获取成功返回 >= 0的值
    if (tryAcquireShared(arg) < 0)
        // 获取许可证失败,进入阻塞
        doAcquireSharedInterruptibly(arg);
}
  • tryAcquireShared()方法在终会调用到Sync#nonfairTryAcquireShared()方法
  • nonfairTryAcquireShared()方法中会减去获取的许可数量,返回剩余的许可数量
// tryAcquireShared() -> nonfairTryAcquireShared()
// 非公平,公平锁会在循环内 hasQueuedPredecessors()方法判断阻塞队列是否有临头节点(第二个节点)
final int nonfairTryAcquireShared(int acquires) {
    for (;;) {
        // 获取 state ,state 这里【表示通行证】
        int available = getState();
        // 计算当前线程获取通行证完成之后,通行证还剩余数量
        int remaining = available - acquires;
        // 如果许可已经用完, 返回负数, 表示获取失败,
        if (remaining < 0 ||
            // 许可证足够分配的,如果 cas 重试成功, 返回正数, 表示获取成功
            compareAndSetState(available, remaining))
            return remaining;
    }
}
  • 如果剩余的许可数量<0, 会调用doAcquireSharedInterruptibly()方法将当前线程加入到阻塞队列中阻塞
  • 方法中调用parkAndCheckInterrupt()阻塞当前线程
private void doAcquireSharedInterruptibly(int arg) {
    // 将调用 Semaphore.aquire 方法的线程,包装成 node 加入到 AQS 的阻塞队列中
    final Node node = addWaiter(Node.SHARED);
    // 获取标记
    boolean failed = true;
    try {
        for (;;) {
            final Node p = node.predecessor();
            // 前驱节点是头节点可以再次获取许可
            if (p == head) {
                // 再次尝试获取许可,【返回剩余的许可证数量】
                int r = tryAcquireShared(arg);
                if (r >= 0) {
                    // 成功后本线程出队(AQS), 所在 Node设置为 head
                    // r 表示【可用资源数】, 为 0 则不会继续传播
                    setHeadAndPropagate(node, r); 
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
            }
            // 不成功, 设置上一个节点 waitStatus = Node.SIGNAL, 下轮进入 park 阻塞
            if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())
                throw new InterruptedException();
        }
    } finally {
        // 被打断后进入该逻辑
        if (failed)
            cancelAcquire(node);
    }
}

最终的AQS状态如下图所示:

  • Thread-1Thread-2Thread-4正常运行
  • AQS的state也就是等于0
  • Thread-0Thread-3再阻塞队列中

1671202055360.jpg


释放许可release()


现在Thread-4运行完毕,要释放许可,Thread-0Thread-3又是如何恢复执行的呢?

  • 调用release()方法释放许可,最终调用 Sync#releaseShared()方法
  • 如果方法tryReleaseShared(arg)尝试释放许可成功,那么调用doReleaseShared();进行唤醒
// release() -> releaseShared()
public final boolean releaseShared(int arg) {
    // 尝试释放锁
    if (tryReleaseShared(arg)) {
        doReleaseShared();
        return true;
    }    
    return false;
}
  • tryReleaseShared()方法主要是尝试释放许可
  • 获取当前许可数量 + 释放的数量,然后通过cas设置回去
protected final boolean tryReleaseShared(int releases) {    
    for (;;) {
        // 获取当前锁资源的可用许可证数量
        int current = getState();
        int next = current + releases;
        // 索引越界判断
        if (next < current)            
            throw new Error("Maximum permit count exceeded");        
        // 释放锁
        if (compareAndSetState(current, next))            
            return true;    
    }
}
  • 调用doReleaseShared()方法唤醒队列中的线程
  • 其中unparkSuccessor()方法是唤醒的核心操作
// 唤醒
private void doReleaseShared() {
    // 如果 head.waitStatus == Node.SIGNAL ==> 0 成功, 下一个节点 unpark 
    // 如果 head.waitStatus == 0 ==> Node.PROPAGATE    
    for (;;) {
        Node h = head;
        if (h != null && h != tail) {
            int ws = h.waitStatus;
            if (ws == Node.SIGNAL) {
                // 防止 unparkSuccessor 被多次执行
                if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                    continue;
                // 唤醒后继节点
                unparkSuccessor(h);
            }
            // 如果已经是 0 了,改为 -3,用来解决传播性
            else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                continue;
        }
        if (h == head)
            break;
    }
}

最终AQS状态如下图所示:


1671202069778.jpg


  • 许可state变回1
  • 然后Thread-0开始竞争,如果竞争成功,如下图所示:

1671202078983.jpg


  • 由于Thread-0竞争成功,再次获取到许可,许可数量减1,最终又变回0
  • 然后等待队列中剩余Thread-3


总结


Semaphore信号量类基于AQS的共享锁实现,有公平锁和非公平锁两个版本,它用来限制能同时访问共享资源的线程上限,典型的应用场景是可以用来保护有限的公共资源,比如数据库连接等。

目录
相关文章
|
2月前
|
Java
JAVA并发编程系列(7)Semaphore信号量剖析
腾讯T2面试,要求在3分钟内用不超过20行代码模拟地铁安检进站过程。题目设定10个安检口,100人排队,每人安检需5秒。实际中,这种题目主要考察并发编程能力,特别是多个线程如何共享有限资源。今天我们使用信号量(Semaphore)实现,限制同时进站的人数,并通过信号量控制排队和进站流程。并详细剖析信号量核心原理和源码。
|
6月前
|
安全 Java API
多线程(JUC, ReentrantLock, 原子类, 线程池, 信号量 Semaphore, CountDownLatch)
多线程(JUC, ReentrantLock, 原子类, 线程池, 信号量 Semaphore, CountDownLatch)
53 4
|
6月前
|
Java 数据库
Semaphore(信号量)源码解读与使用
Semaphore(信号量)源码解读与使用
|
6月前
多线程并发之Semaphore(信号量)使用详解
多线程并发之Semaphore(信号量)使用详解
1971 0
|
Java
Java多线程:Semaphore
Java多线程:Semaphore
114 0
并发编程之Semaphore信号量
`Semaphore` 翻译过来就是信号量, 其根本原理就是基于 `CAS` 共享锁的一种实现。举一个例子。 假设停车场只有三个车位,一开始三个车位都是空的。这时如果同时来了五辆车,看门人允许其中三辆不受阻碍的进入,然后放下车拦,剩下的车则必须在入口等待,此后来的车也都不得不在入口处等待。这时,有一辆车离开停车场,看门人得知后,打开车拦,放入一辆,如果又离开两辆,则又可以放入两辆,如此往复。
164 0
Semaphore 信号量源码分析
Semaphore 信号量源码分析
Semaphore 信号量源码分析
|
Java
Java并发编程之Semaphore信号量
Java并发编程之Semaphore信号量
151 0
Java并发编程之Semaphore信号量
Semaphore信号量
Semaphore 可以用来限制或管理数量有限资源的使用情况 - 信号量的作用是用来维护一个“许可证”,的计数,线程可以获取 许可证,那信号量剩余许可证就减一,线程也可以是否一个许可证,那剩余的许可证就加一,当信号量拥有的许可证为0时,那么下一个线程想获得许可证,就要进行等待,直到另外线程释放许可证
276 0
Semaphore信号量
|
Java
【java并发】Semaphore 的使用
1、Semaphore的初步使用   Semaphore是什么,能做什么?     Semaphore 是 synchronized 的加强版,作用是控制线程的并发数量。就这一点而言,单纯的synchronized 关键字是实现不了的。
664 0