基于基于全局差错能量函数的双目图像立体匹配算法matlab仿真,并提取图像的深度信息

简介: 基于基于全局差错能量函数的双目图像立体匹配算法matlab仿真,并提取图像的深度信息

1.算法概述

    全局的能量函数公式如下: E(f)=Edata(f)+Esmooth(f) 其中,Edata 表示能量函数的数据项,意为该像素只考虑自身的视差值的倾向,不考虑 邻域内其他像素的影响;N 表示匹配聚合时的支持窗口;p 表示图像中的一个像素 点;dp∈D,D 表示视差取值范围;Dp(dp)表示 p 点的视差为 dp 时的匹配代 价;Esmooth 表示能量函数的平滑项,平滑项反映了像素间视差值的影响关系。 

   针对全局立体匹配算法计算量大的问题,引入全局差错能量函数对算法进行改进.将全局差错能量函数作为立体匹配的匹配代价,同时进行跳跃式区域生长,隔点求取差错能量函数值以获取视差图,并采用均值滤波器对其做平滑处理,设置影响滤波阈值大小的容差系数,使之更适合人眼的观察.针对不同像素的彩色图像对,自适应选取容差系数得到较优的滤波后视差图.实验结果表明,改进算法在保证准确性的基础上可有效减小计算耗时,提高匹配实时性.

1.png

立体匹配算法步骤

1)匹配代价计算(Cost Computation):

   计算匹配代价,即计算参考图像上每个像素点IR(P),以所有视差可能性去匹配目标图像上对应点IT(pd)的代价值,因此计算得到的代价值可以存储在一个h*w*d(MAX)的三维数组中,通常称这个三维数组为视差空间图(Disparity Space Image,DSI)。匹配代价时立体匹配的基础,设计抗噪声干扰、对光照变化不敏感的匹配代价,能提高立体匹配的精度。因此,匹配代价的设计在全局算法和局部算法中都是研究的重点。

2)代价聚合(Cost Aggregation)

     通常全局算法不需要代价聚合,而局部算法需要通过求和、求均值或其他方法对一个支持窗口内的匹配代价进行聚合而得到参考图像上一点p在视差d处的累积代价CA(p,d),这一过程称为代价聚合。通过匹配代价聚合,可以降低异常点的影响,提高信噪比(SNR,Signal Noise Ratio)进而提高匹配精度。代价聚合策略通常是局部匹配算法的核心,策略的好坏直接关系到最终视差图(Disparity maps)的质量。

3)视差计算(Disparity Computation):

    局部立体匹配算法的思想,在支持窗口内聚合完匹配代价后,获取视差的过程就比较简单。通常采用‘胜者为王’策略(WTA,Winner Take All),即在视差搜索范围内选择累积代价最优的点作为对应匹配点,与之对应的视差即为所求的视差。即P点的视差为。

4)后处理(Post Process)

    一般的,分别以左右两图为参考图像,完成上述三个步骤后可以得到左右两幅视差图像。但所得的视差图还存在一些问题,如遮挡点视差不准确、噪声点、误匹配点等存在,因此还需要对视差图进行优化,采用进一步执行后处理步骤对视差图进行修正。常用的方法有插值(Interpolation)、亚像素增强(Subpixel Enhancement)、精细化(Refinement)、图像滤波(Image Filtering)等操作。

2.仿真效果预览
matlab2022a仿真结果如下:

2.png
3.png
4.png

3.核心MATLAB代码预览

[m n p]=size(XR);
Edis=1000000*ones(m,n);
disparity=zeros(m,n);
XR=double(XR);
XL=double(XL);
 
% process by increasing disparity
for d=0:dmax
    fprintf ('Computing for disparity: %d\n',d);
% composing error energy matrix for every disparity.(Algorithm step:1)
for j=3+d:n-2
    for i=2:m-1
         if p==3
           %kareselfark(i,j-d)=(XR(i,j,1)-XL(i,j-d,1))^2+(XR(i,j,2)-XL(i,j-d,2))^2+(XR(i,j,3)-XL(i,j-d,3))^2;  
           if matching==1
           %point matching 
            ErrorEnergy(i,j-d)=(1/3)*[(XL(i,j,1)-XR(i,j-d,1))^2+(XL(i,j,2)-XR(i,j-d,2))^2+(XL(i,j,3)-XR(i,j-d,3))^2];
           elseif matching==2 
           %block matching with line type window
            ErrorEnergy(i,j-d)=(1/15)*[(XL(i,j,1)-XR(i,j-d,1))^2+(XL(i,j,2)-XR(i,j-d,2))^2+(XL(i,j,3)-XR(i,j-d,3))^2+(XL(i,j-1,1)-XR(i,j-1-d,1))^2+(XL(i,j-1,2)-XR(i,j-1-d,2))^2+(XL(i,j-1,3)-XR(i,j-1-d,3))^2+(XL(i,j+1,1)-XR(i,j+1-d,1))^2+(XL(i,j+1,2)-XR(i,j+1-d,2))^2+(XL(i,j+1,3)-XR(i,j+1-d,3))^2+(XL(i,j-2,1)-XR(i,j-2-d,1))^2+(XL(i,j-2,2)-XR(i,j-2-d,2))^2+(XL(i,j-2,3)-XR(i,j-2-d,3))^2+(XL(i,j+2,1)-XR(i,j+2-d,1))^2+(XL(i,j+2,2)-XR(i,j+2-d,2))^2+(XL(i,j+2,3)-XR(i,j+2-d,3))^2];
           else
               top=0;
               for k=i-1:i+1
                   for l=j-1:j+1
                     top=top+(XL(k,l,1)-XR(k,l-d,1))^2+(XL(k,l,2)-XR(k,l-d,2))^2+(XL(k,l,3)-XR(k,l-d,3))^2;  
                   end
               end
               ErrorEnergy(k,l-d)=(1/27)*top;
           end 
       else
           Disp('ERROR WARNING: Use RGB color image for stereo pair');
        end
    end
end
 
% filtering. (Algorithm step:2)
ErrorEnergyFilt=IterativeAveragingFilter(ErrorEnergy,1,[4 4]);
 
% selecting disparity which has minimum error energy.(Algorithm step:3)
[m1 n1]=size(ErrorEnergyFilt);
for k=1:m1
    for l=1:n1
       if Edis(k,l)>ErrorEnergyFilt(k,l)
            disparity(k,l)=d;
            Edis(k,l)=ErrorEnergyFilt(k,l);
        end        
    end
end
end
% clear 1000000 pre-setting in Edis
for k=1:m
    for l=1:n
       if Edis(k,l)==1000000
            Edis(k,l)=0;
        end        
    end
end
 
% extracting calculated zone
nx=n-dmax;
for k=2:m-1
    for l=2:nx-1
        disparityx(k,l)=disparity(k,l);
        %Edisx(k,l)=Edis(k,l);
        %regMapx(k,l)=regMap(k,l);
        XLx(k,l)=XL(k,l);
        XRx(k,l)=XR(k,l);
        top=0;
        for x=k-1:k+1
            for y=l-1:l+1
                top=top+(XL(x,y+disparity(k,l),1)-XR(x,y,1))^2+(XL(x,y+disparity(k,l),2)-XR(x,y,2))^2+(XL(x,y+disparity(k,l),3)-XR(x,y,3))^2;  
            end
        end
        Ed(k,l)=(1/27)*top;
    end
end
 
%calculates error energy treshold for reliablity of disparity
Toplam=0;
for k=1:m-1
    for l=1:nx-1
      Toplam=Toplam+Ed(k,l);       
    end
end
% Error threshold Ve
Ve=Alfa*(Toplam/((m-1)*(nx-1)));
 
EdReliable=Ed;
disparityReliable=disparityx;
Ne=zeros(m,nx);
for k=1:m-1
    for l=1:nx-1
       if Ed(k,l)>Ve
          % sets unreliable disparity to zero
          disparityReliable(k,l)=0;
          EdReliable(k,l)=0;
          Ne(k,l)=1; % indicates no-estimated state
        end        
    end
end
 
% calculating reliablities both raw disparity and filtered disparity
TopE=0;
TopER=0;
Sd=0;
for k=1:m-1
    for l=1:nx-1
          TopE=TopE+Ed(k,l);
          if Ne(k,l)==0          
             TopER=TopER+EdReliable(k,l);
             Sd=Sd+1;
          end          
    end
end
ReliablityE=((nx-1)*(m-1))/(TopE);
ReliablityER=(Sd)/(TopER);
 
% median filtering for repairment of occulations
%disparityF=IterativeAveragingFilter(disparity,5,[4 4]);
disparityF=medfilt2(disparityReliable,[5 5]);
 
for k=1:m-1
    for l=1:nx-1
          % Zero disparity produce zero dept
          if disparityF(k,l)<5;
              DepthMap(k,l)=0;
          else
              DepthMap(k,l)=foc*(T/disparityF(k,l));
        end        
    end
end
 
fprintf ('******** Reliablity Report  ********** \n')
fprintf ('Reliablity of the disparity map: %f \n',ReliablityE)
fprintf ('Reliablity of the disparity map filtered: %f \n',ReliablityER)
fprintf ('******** Algoritm Speed Report  ********** \n')
fprintf ('Time Spend for calculation: %f \n',toc)
 
figure(1)
imagesc(disparityx);colorbar;
colormap('gray')
title('Disparity Map')
% pixval on
 
figure(2)
colormap('gray')
imagesc(disparityReliable);colorbar;
title('Disparity Map with Reliable Disparities')
% pixval on
 
figure(3)
colormap('gray')
imagesc(disparityF);colorbar;
title('Median Filtered Disparity Map with Reliable Disparities')
% pixval on
A69
相关文章
|
8天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
5天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
11天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
16天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
16天前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
13天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
21天前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。