Caffe:使用 Caffe 训练自己的 Alexnet

简介: 使用 Caffe 训练自己的 Alexnet

参考:

  1. caffe:用自己的图像数据训练模型(图片分类)
  2. Brewing ImageNet

1. 数据准备

caffe_master/data 中新建文件夹 myalex,在 myalex/train 文件里存放训练的图片 85 张,在 myalex/val 文件里存放验证集的图片 36 张,在 myalex/test 文件里面放测试的照片

根据训练和测试的图片生成 train.txt 文件、 val.txt 文件和 test.txt 文件,此文件里包含文件名和分类标签。标签为 1 或 -1。

可在 train 文件夹路径下,使用 find -name *.jpeg |cut -d '/' -f2-3 >train.txt 脚本命令来生成 train.txt 文件。val.txt 的生成方法类似。

train.txt 如图所示:

把图片变成 256×256 大小,使用 shell 命令:

for name in /path/to/imagenet/val/*.JPEG; do
    convert -resize 256x256\! $name $name
done

或者在下一步创建 leveldb 数据时,将 examples/imagenet/create_imagenet.sh 的 RESIZE 设置为 true 来更改大小。

生成 leveldb 格式数据:在 caffe-master/examples 里创建文件夹 myalex,将 imagenet 文件夹里的 create_imagenet.sh 复制到该文件夹下进行修改,主要修改训练和测试路径的位置,然后在命令行的 caffe-master 路径下,运行 ./examples/myalex/create_imagenet.sh。运行完毕,将在 myalex 里生成 myalex_train_leveldb 和 myalex_val_leveldb。

修改如下:

#!/usr/bin/env sh
# Create the imagenet lmdb inputs
# N.B. set the path to the imagenet train + val data dirs
set -e

# 改为自己的 train 和 val 路径
EXAMPLE=examples/myalex
DATA=data/myalex
TOOLS=build/tools

TRAIN_DATA_ROOT=data/myalex/train/
VAL_DATA_ROOT=data/myalex/val/

# Set RESIZE=true to resize the images to 256x256. Leave as false if images have
# already been resized using another tool.
# 使用 Alexnet 输入是 277x277 而不是 256x256
RESIZE=true
if $RESIZE; then
  RESIZE_HEIGHT=227
  RESIZE_WIDTH=227
else
  RESIZE_HEIGHT=0
  RESIZE_WIDTH=0
fi

if [ ! -d "$TRAIN_DATA_ROOT" ]; then
  echo "Error: TRAIN_DATA_ROOT is not a path to a directory: $TRAIN_DATA_ROOT"
  echo "Set the TRAIN_DATA_ROOT variable in create_imagenet.sh to the path" \
       "where the ImageNet training data is stored."
  exit 1
fi

if [ ! -d "$VAL_DATA_ROOT" ]; then
  echo "Error: VAL_DATA_ROOT is not a path to a directory: $VAL_DATA_ROOT"
  echo "Set the VAL_DATA_ROOT variable in create_imagenet.sh to the path" \
       "where the ImageNet validation data is stored."
  exit 1
fi

echo "Creating train lmdb..."

# 同样改为自己的命名
GLOG_logtostderr=1 $TOOLS/convert_imageset \
    --resize_height=$RESIZE_HEIGHT \
    --resize_width=$RESIZE_WIDTH \
    --shuffle \
    $TRAIN_DATA_ROOT \
    $DATA/train.list \
    $EXAMPLE/myalex_train_lmdb

echo "Creating val lmdb..."

GLOG_logtostderr=1 $TOOLS/convert_imageset \
    --resize_height=$RESIZE_HEIGHT \
    --resize_width=$RESIZE_WIDTH \
    --shuffle \
    $VAL_DATA_ROOT \
    $DATA/val.list \
    $EXAMPLE/myalex_val_lmdb

echo "Done."

我们得到了这两个东西:

2. 计算图像均值

模型需要从每张图片里减去均值,所以我们必须提前获得图像的均值,用 tools/compute_image_mean.cpp 实现,这个 cpp 是一个很好的例子去熟悉如何操作多个组件,例如协议缓冲区,leveldb,登录等。我们直接复制 Imagenet 的 make_imagenet_mean,并修改路径即可。然后在命令行的 caffe-master 路径下,运行 ./examples/myalex/make_imagenet_mean.sh,运行结束后,将会在 caffe-master/data/myalex 里生成 myalex_mean.binaryproto。

#!/usr/bin/env sh
# Compute the mean image from the imagenet training lmdb
# N.B. this is available in data/ilsvrc12

EXAMPLE=examples/myalex
DATA=data/myalex
TOOLS=build/tools

$TOOLS/compute_image_mean $EXAMPLE/myalex_train_lmdb \
  $DATA/myalex_mean.binaryproto

echo "Done."

3. 定义网络

我们使用 Alexnet,拷贝 caffe/models/bvlc_alexnetcaffe/examples/myalex/

要修改 solver.prototxttrain_val.prototxt

3.1 修改 solver.prototxt

net: "examples/myalex/bvlc_alexnet/train_val.prototxt"
test_iter: 50 //测试迭代次数
test_interval: 100 //多少次迭代测试一次
base_lr: 0.01 //基础学习率
lr_policy: "step"
gamma: 0.1
stepsize: 100000
display: 20 //多少次迭代显示一次
max_iter: 700 //多少次迭代显示一次
momentum: 0.9
weight_decay: 0.0005
snapshot: 700 //多少次迭代保存一次模型快照
snapshot_prefix: "examples/myalex/bvlc_alexnet/caffe_alexnet_train" //快照保存位置
solver_mode: GPU

3.2 修改 train_val.prototxt

//记得两个参数不止一个!全部修改了!别只修改一个

mean_file : "examples/myalex/imagenet_mean.binaryproto"
//这个是上面生成的均值文件位置

source : "examples/myalex/myalex_train_lmdb"
//这个是上面生成的 lmdb 文件位置

//然后如果你自己要定义类别个数(嫌麻烦就别改这里了!不会影响!),请在最后一层里面
name : "fc8" //这个名字的代表 alexnet 的最后一层,其他的网络自己找
num_output: 2 //alexnet 默认 1000 个 改成你自己的个数,我改成: num_output: 2 //也可以不改,训练不影响

4. 训练网络

到根目录,执行命令:

./build/tools/caffe train --solver=examples/myalex/bvlc_alexnet/solver.prototxt

目录
相关文章
|
3月前
|
机器学习/深度学习 人工智能 算法框架/工具
5.Caffe
Caffe是由伯克利人工智能研究所以及社区贡献者们共同开发的一款深度学习框架。它在深度学习领域发挥了巨大的推动作用,并以其优秀的结构、性能和代码质量成为了该领域的标志性工具。Caffe不仅降低了学习和开发的难度,还将深度学习的所有细节透明化。主要应用于视频和图像处理,核心语言为C++,并兼容命令行、Python和MATLAB接口,同时支持CPU和GPU运行,具备出色的通用性和性能。其快速上手和高速运行的特点使得即使是复杂模型和大规模数据也能轻松应对,用户可以利用多种预设层类型来自定义模型。
50 5
|
8月前
|
算法框架/工具 开发工具 git
【项目--Hi3559A】(caffe-yolov3)yolov3的darknet模型转caffe模型详细教程
【项目--Hi3559A】(caffe-yolov3)yolov3的darknet模型转caffe模型详细教程
97 1
【项目--Hi3559A】(caffe-yolov3)yolov3的darknet模型转caffe模型详细教程
|
8月前
|
机器学习/深度学习 PyTorch 调度
迁移学习的 PyTorch 实现
迁移学习的 PyTorch 实现
|
算法 PyTorch 算法框架/工具
UNet++详细解读(二)pytorch从头开始搭建UNet++
UNet++详细解读(二)pytorch从头开始搭建UNet++
510 0
|
PyTorch 算法框架/工具 网络架构
UNet详细解读(二)pytorch从头开始搭建UNet
UNet详细解读(二)pytorch从头开始搭建UNet
334 0
|
PyTorch 算法框架/工具 异构计算
Pytorch实现经典模型AlexNet模型
Pytorch实现经典模型AlexNet模型
123 0
|
Ubuntu TensorFlow 算法框架/工具
MobileNet实战:tensorflow2.X版本,MobileNetV2图像分类任务(小数据集)
本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNetV2,MobileNetV2在MobileNetV1的基础上增加了线性瓶颈(Linear Bottleneck)和倒残差(Inverted Residual)是一种轻量级的网络,适合应用在真实的移动端应用场景。
398 0
MobileNet实战:tensorflow2.X版本,MobileNetV2图像分类任务(小数据集)
|
人工智能 算法 Ubuntu
MobileNet实战:tensorflow2.X版本,MobileNetV2图像分类任务(大数据集)
本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNetV2。本文实现的算法有一下几个特点: 1、自定义了图片加载方式,更加灵活高效,不用将图片一次性加载到内存中,节省内存,适合大规模数据集。 2、加载模型的预训练权重,训练时间更短。 3、数据增强选用albumentations。
250 0
MobileNet实战:tensorflow2.X版本,MobileNetV2图像分类任务(大数据集)
|
人工智能 算法 Ubuntu
MobileNet实战:tensorflow2.X版本,MobileNetV1图像分类任务(大数据集)
本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNetV1。本文实现的算法有一下几个特点: 1、自定义了图片加载方式,更加灵活高效,不用将图片一次性加载到内存中,节省内存,适合大规模数据集。 2、加载模型的预训练权重,训练时间更短。 3、数据增强选用albumentations。
176 0
MobileNet实战:tensorflow2.X版本,MobileNetV1图像分类任务(大数据集)
|
Ubuntu TensorFlow 算法框架/工具
MobileNet实战:tensorflow2.X版本,MobileNetV1图像分类任务(小数据集)
本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNet,其核心是采用了深度可分离卷积,其不仅可以降低模型计算复杂度,而且可以大大降低模型大小,本文使用的案例训练出来的模型只有38M,适合应用在真实的移动端应用场景。
260 0

相关实验场景

更多